43 research outputs found
Towards a direct measurement of vacuum magnetic birefringence: PVLAS achievements
Nonlinear effects in vacuum have been predicted but never observed yet
directly. The PVLAS collaboration has long been working on an apparatus aimed
at detecting such effects by measuring vacuum magnetic birefringence.
Unfortunately the sensitivity has been affected by unaccounted noise and
systematics since the beginning. A new small prototype ellipsometer has been
designed and characterized at the Department of Physics of the University of
Ferrara, Italy entirely mounted on a single seismically isolated optical bench.
With a finesse F = 414000 and a cavity length L = 0.5 m we have reached the
predicted sensitivity of psi = 2x10^-8 1/sqrt(Hz) given the laser power at the
output of the ellipsomenter of P = 24 mW. This record result demonstrates the
feasibility of reaching such sensitivities and opens the way to designing a
dedicated apparatus for a first detection of vacuum magnetic birefringence
Ultrafast Resonant Polarization Interferometry: Towards the First Direct Detection of Vacuum Polarization
Vacuum polarization, an effect predicted nearly 70 years ago, is still yet to
be directly detected despite significant experimental effort. Previous attempts
have made use of large liquid-helium cooled electromagnets which inadvertently
generate spurious signals that mask the desired signal. We present a novel
approach for the ultra-sensitive detection of optical birefringence that can be
usefully applied to a laboratory detection of vacuum polarization. The new
technique has a predicted birefringence measurement sensitivity of in a 1 second measurement. When combined with the extreme
polarizing fields achievable in this design we predict that a vacuum
polarization signal will be seen in a measurement of just a few days in
duration.Comment: 9 pages, 2 figures. submitted to PR
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection