15 research outputs found

    Testing the low scale seesaw and leptogenesis

    Full text link
    Heavy neutrinos with masses below the electroweak scale can simultaneously generate the light neutrino masses via the seesaw mechanism and the baryon asymmetry of the universe via leptogenesis. The requirement to explain these phenomena imposes constraints on the mass spectrum of the heavy neutrinos, their flavour mixing pattern and their CPCP properties. We first combine bounds from different experiments in the past to map the viable parameter regions in which the minimal low scale seesaw model can explain the observed neutrino oscillations, while being consistent with the negative results of past searches for physics beyond the Standard Model. We then study which additional predictions for the properties of the heavy neutrinos can be made based on the requirement to explain the observed baryon asymmetry of the universe. Finally, we comment on the perspectives to find traces of heavy neutrinos in future experimental searches at the LHC, NA62, BELLE II, T2K, SHiP or a future high energy collider, such as ILC, CEPC or FCC-ee. If any heavy neutral leptons are discovered in the future, our results can be used to assess whether these particles are indeed the common origin of the light neutrino masses and the baryon asymmetry of the universe. If the magnitude of their couplings to all Standard Model flavours can be measured individually, and if the Dirac phase in the lepton mixing matrix is determined in neutrino oscillation experiments, then all model parameters can in principle be determined from this data. This makes the low scale seesaw a fully testable model of neutrino masses and baryogenesis.Comment: We corrected errors in the experimental sensitivities and in the discussion of the full testability of the model. We also added and updated plots and references. 37 pages plus appendix, 12 figure

    Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands

    No full text

    Is it possible to discover a dark matter particle with an accelerator?

    No full text

    Leptogenesis from oscillations of heavy neutrinos with large mixing angles

    No full text
    via the seesaw mechanism and the baryon asymmetry of the Universe via leptogenesis. If the mass of the heavy neutrinos is below the electroweak scale, they may be found at the LHC, BELLE II, NA62, the proposed SHiP experiment or a future high-energy collider. In this mass range, the baryon asymmetry is generated via CP -violating oscillations of the heavy neutrinos during their production. We study the generation of the baryon asymmetry of the Universe in this scenario from first principles of non-equilibrium quantum field theory, including spectator processes and feedback effects. We eliminate several uncertainties from previous calcula-tions and find that the baryon asymmetry of the Universe can be explained with larger heavy neutrino mixing angles, increasing the chance for an experimental discovery. For the limiting cases of fast and strongly overdamped oscillations of right-handed neutrinos, the generation of the baryon asymmetry can be calculated analytically up to corrections of order one
    corecore