6 research outputs found

    Assembly and function of the Photosystem II manganese stabilizing protein: lessons from its natively unfolded behavior

    Full text link
    The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their p I (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the p I of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43544/1/11120_2004_Article_7759.pd

    Structural and functional aspects of the MSP (PsbO) and study of its differences in thermophilic versus mesophilic organisms

    No full text
    corecore