1,074 research outputs found
Stable Marriage with Multi-Modal Preferences
We introduce a generalized version of the famous Stable Marriage problem, now
based on multi-modal preference lists. The central twist herein is to allow
each agent to rank its potentially matching counterparts based on more than one
"evaluation mode" (e.g., more than one criterion); thus, each agent is equipped
with multiple preference lists, each ranking the counterparts in a possibly
different way. We introduce and study three natural concepts of stability,
investigate their mutual relations and focus on computational complexity
aspects with respect to computing stable matchings in these new scenarios.
Mostly encountering computational hardness (NP-hardness), we can also spot few
islands of tractability and make a surprising connection to the \textsc{Graph
Isomorphism} problem
Approximability results for stable marriage problems with ties
We consider instances of the classical stable marriage problem in which persons may include ties in their preference lists. We show that, in such a setting, strong lower bounds hold for the approximability of each of the problems of finding an egalitarian, minimum regret and sex-equal stable matching. We also consider stable marriage instances in which persons may express unacceptable partners in addition to ties. In this setting, we prove that there are constants delta, delta' such that each of the problems of approximating a maximum and minimum cardinality stable matching within factors of delta, delta' (respectively) is NP-hard, under strong restrictions. We also give an approximation algorithm for both problems that has a performance guarantee expressible in terms of the number of lists with ties. This significantly improves on the best-known previous performance guarantee, for the case that the ties are sparse. Our results have applications to large-scale centralized matching schemes
General Scheme for Perfect Quantum Network Coding with Free Classical Communication
This paper considers the problem of efficiently transmitting quantum states
through a network. It has been known for some time that without additional
assumptions it is impossible to achieve this task perfectly in general --
indeed, it is impossible even for the simple butterfly network. As additional
resource we allow free classical communication between any pair of network
nodes. It is shown that perfect quantum network coding is achievable in this
model whenever classical network coding is possible over the same network when
replacing all quantum capacities by classical capacities. More precisely, it is
proved that perfect quantum network coding using free classical communication
is possible over a network with source-target pairs if there exists a
classical linear (or even vector linear) coding scheme over a finite ring. Our
proof is constructive in that we give explicit quantum coding operations for
each network node. This paper also gives an upper bound on the number of
classical communication required in terms of , the maximal fan-in of any
network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in
arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the
Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP'09), LNCS 5555, pp. 622-633, 200
- …