4,233 research outputs found
Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: II. Linear Behavior in Neutral-to-Ionic Transition
Dynamics of charge density and lattice displacements after the neutral phase
is photoexcited is studied by solving the time-dependent Schr\"odinger equation
for a one-dimensional extended Peierls-Hubbard model with alternating
potentials. In contrast to the ionic-to-neutral transition studied previously,
the neutral-to-ionic transition proceeds in an uncooperative manner as far as
the one-dimensional system is concerned. The final ionicity is a linear
function of the increment of the total energy. After the electric field is
turned off, the electronic state does not significantly change, roughly keeping
the ionicity, even if the transition is not completed, because the ionic
domains never proliferate. As a consequence, an electric field with frequency
just at the linear absorption peak causes the neutral-to-ionic transition the
most efficiently. These findings are consistent with the recent experiments on
the mixed-stack organic charge-transfer complex, TTF-CA. We artificially modify
or remove the electron-lattice coupling to discuss the origin of such
differences between the two transitions.Comment: 17 pages, 9 figure
First ALMA Observation of a Solar Plasmoid Ejection from an X-ray Bright Point
Eruptive phenomena such as plasmoid ejections or jets are an important
feature of solar activity with the potential for improving our understanding of
the dynamics of the solar atmosphere. Such ejections are often thought to be
signatures of the outflows expected in regions of fast magnetic reconnection.
The 304 A EUV line of Helium, formed at around 10^5 K, is found to be a
reliable tracer of such phenomena, but the determination of physical parameters
from such observations is not straightforward. We have observed a plasmoid
ejection from an X-ray bright point simultaneously at millimeter wavelengths
with ALMA, at EUV wavelengths with AIA, in soft X-rays with Hinode/XRT. This
paper reports the physical parameters of the plasmoid obtained by combining the
radio, EUV and X-ray data. As a result, we conclude that the plasmoid can
consist either of (approximately) isothermal 10^5 K plasma that is optically
thin at 100 GHz, or else a 10^4 K core with a hot envelope. The analysis
demonstrates the value of the additional temperature and density constraints
that ALMA provides, and future science observations with ALMA will be able to
match the spatial resolution of space-borne and other high-resolution
telescopes.Comment: 10 page, 5 figures, accepted for publication in Astrophysical Journal
Letter. The movie can be seen at the following link:
http://hinode.nao.ac.jp/user/shimojo/data_area/plasmoid/movie5.mp
Relaxation Dynamics of Photocarriers in One-Dimensional Mott Insulators Coupled to Phonons
We examine recombination processes of photocarriers in one-dimensional Mott
insulators coupled to phonons. Performing density matrix renormalization group
calculations, we find that, even for small electron-phonon coupling, many
phonons are generated dynamically, which cause initial relaxation process after
the irradiation. At the same time, spin-charge coupling coming from mixing of
high- and low-energy states by the irradiation is suppressed. We discuss
differences between Mott and band insulators in terms of relaxation dynamics.Comment: 5 pages, 3 figure
Infrared Imaging of the Gravitational Lens PG 1115+080 with the Subaru Telescope
We present high spatial resolution images of the gravitational-lens system PG
1115+080 taken with the near-infrared camera (CISCO) on the Subaru telescope.
The FWHM of the combined image is in the -band, yielding spatial
resolution of after a deconvolution procedure. This is a first
detection of an extended emission adjacent to the A1/A2 components, indicating
the presence of a fairly bright emission region with a characteristic angular
radius of 5 mas (40 pc). The near-infrared image of the Einstein ring
was extracted in both the and bands. The color is found to be
significantly redder than that of a synthetic model galaxy with an age of 3
Gyr, the age of the universe at the quasar redshift.Comment: 11 pages, 6 figures. Accepted for publication in PASJ(2000
- …