3 research outputs found

    Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions

    Get PDF
    Thus far, all experiments leading to H-2 production by sulfur-deprived cultures of microalga have been done with photoheterotrophic cultures in the presence of acetate, which increases the cost of the H-2 produced. This study demonstrates that sustained H-2 photoproduction by a sulfur-deprived green alga, Chlamydomonas reinhardtii, is possible under strictly photoautotrophic conditions in the absence of acetate or any other organic substrate in the medium. To accomplish this, we used cultures pre-grown with 2% CO2 under low light conditions (25 mu E m(-2) s(-1)) and also supplemented with CO2 during S-deprivation, along with a special light regime. Maximum H-2 production (56.4 +/- 16.7 ml l(-1) culture, equal to 56.4 x 10(-3) m(3) m(-3) culture) was observed with photoautotrophic cultures: (a) supplied with carbon dioxide for the first 24 h of sulfur deprivation, (b) exposed during the O-2-producing stage to high light (110 - 120 mu E m(-2) s(-1)), and (c) then exposed to low light (20 - 25 mu E m(-2) s(-1)) during the O-2-consumption and H-2-production stages. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved

    Hydrogenases, Nitrogenases, Anoxia, and H2 Production in Water-Oxidizing Phototrophs

    No full text
    corecore