208 research outputs found
WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics
Prostate cancer cells with stem cell characteristics were identified in human prostate cancer cell lines by their ability to form from single cells self-renewing prostaspheres in non-adherent cultures. Prostaspheres exhibited heterogeneous expression of proliferation, differentiation and stem cell-associated makers CD44, ABCG2 and CD133. Treatment with WNT inhibitors reduced both prostasphere size and self-renewal. In contrast, addition of Wnt3a caused increased prostasphere size and self-renewal, which was associated with a significant increase in nuclear Ξ-catenin, keratin 18, CD133 and CD44 expression. As a high proportion of LNCaP and C4-2B cancer cells express androgen receptor we determined the effect of the androgen receptor antagonist bicalutamide. Androgen receptor inhibition reduced prostasphere size and expression of PSA, but did not inhibit prostasphere formation. These effects are consistent with the androgen-independent self-renewal of cells with stem cell characteristics and the androgen-dependent proliferation of transit amplifying cells. As the canonical WNT signaling effector Ξ-catenin can also associate with the androgen receptor, we propose a model for tumour propagation involving a balance between WNT and androgen receptor activity. That would affect the self-renewal of a cancer cell with stem cell characteristics and drive transit amplifying cell proliferation and differentiation. In conclusion, we provide evidence that WNT activity regulates the self-renewal of prostate cancer cells with stem cell characteristics independently of androgen receptor activity. Inhibition of WNT signaling therefore has the potential to reduce the self-renewal of prostate cancer cells with stem cell characteristics and improve the therapeutic outcome.Peer reviewe
Human Ξ±2Ξ²1HI CD133+VE epithelial prostate stem cells express low levels of active androgen receptor
Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (Ξ±(2)Ξ²(1)(HI) CD133(+VE)), transiently amplifying (Ξ±(2)Ξ²(1)(HI) CD133(-VE)) and terminally differentiated (Ξ±(2)Ξ²(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in Ξ±(2)Ξ²(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (Β±SD) fraction of cells expressing AR were 77% (Β±6%) in Ξ±(2)Ξ²(1)(HI) CD133(+VE) stem cells and 68% (Β±12%) in Ξ±(2)Ξ²(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in Ξ±(2)Ξ²(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis
Androgen Receptor Drives Cellular Senescence
The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΞN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor
Epithelial Hic-5/ARA55 expression contributes to prostate tumorigenesis and castrate responsiveness
Stromalβepithelial interactions dictate prostate tumorigenesis and response to castration. Hydrogen peroxide-inducible clone 5 (Hic-5/ARA55) is a transforming growth factor-beta (TGF-Ξ²)-induced coactivator of androgen receptor (AR) expressed in the prostate stroma. Interestingly, following castration, we identified epithelial expression of Hic-5/ARA55 in mouse and human prostate tissues. To determine the role of epithelial Hic-5 in prostate cancer progression and castration responsiveness, we compared LNCaP cells having Hic-5 stably expressed with the parental LNCaP cells following tissue recombination xenografts with mouse prostate stromal cells. We previously identified knocking out prostate stromal TGF-Ξ² signaling potentiated castrate-resistant prostate tumors, in a Wnt-dependent manner. The LNCaP chimeric tumors containing prostate fibroblasts conditionally knocked out for the TGF-Ξ² type II receptor (Tgfbr2-KO) resulted in larger, more invasive, and castration-resistant tumors compared those with floxed (control) stromal cells. However, the LNCaP-Hic5 associated with Tgfbr2-KO fibroblasts generated chimeric tumors with reduced tumor volume, lack of invasion and restored castration dependence. Neutralization of canonical Wnt signaling is shown to reduce prostate tumor size and restore regression following castration. Thus, we hypothesized that epithelial Hic-5/ARA55 expression negatively regulated Wnt signaling. The mechanism of the Hic-5/ARA55 effects on castration was determined by analysis of the c-myc promoter. C-myc luciferase reporter activity suggested Hic-5/ARA55 expression inhibited c-myc activity by Ξ²-catenin. Sequential ChIP analysis indicated Ξ²-catenin and T-cell-specific 4 (TCF4) bound the endogenous c-myc promoter in the absence of Hic-5 expression. However, the formation of a TCF4/Hic-5 repressor complex inhibited c-myc promoter activity, by excluding Ξ²-catenin binding with TCF4 on the promoter. The data indicate Hic-5/ARA55 expression in response to castration-enabled epithelial regression through the repression of c-myc gene at the chromatin level
Malignant inflammation in cutaneous T-cell lymphoma: a hostile takeover
Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL
Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor
Results from tissue recombination experiments documented well that stromal androgen receptor (AR) plays essential roles in prostate development, but epithelial AR has little roles in prostate development. Using cell specific knockout AR strategy, we generated pes-ARKO mouse with knock out of AR only in the prostate epithelial cells and demonstrated that epithelial AR might also play important roles in the development of prostate gland. We found mice lacking the prostate epithelial AR have increased apoptosis in epithelial CK8-positive luminal cells and increased proliferation in epithelial CK5-positive basal cells. The consequences of these two contrasting results could then lead to the expansion of CK5/CK8-positive intermediate cells, accompanied by stromal atrophy and impaired ductal morphogenesis. Molecular mechanism dissection found AR target gene, TGF-Ξ²1, might play important roles in this epithelial AR-to-stromal morphogenesis modulation. Collectively, these results provided novel information relevant to epithelial AR functions in epithelial-stromal interactions during the development of normal prostate, and suggested AR could also function as suppressor in selective cells within prostate
Characterisation of prostate cancer lesions in heterozygous Men1 mutant mice
<p>Abstract</p> <p>Background</p> <p>Mutations of the <it>MEN1 </it>gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome. Our group and others have shown that <it>Men1 </it>disruption in mice recapitulates MEN1 pathology. Intriguingly, rare lesions in hormone-dependent tissues, such as prostate and mammary glands, were also observed in the <it>Men1 </it>mutant mice.</p> <p>Methods</p> <p>To study the occurrence of prostate lesions, we followed a male mouse cohort of 47 <it>Men1</it><sup>+/- </sup>mice and 23 age-matched control littermates, starting at 18 months of age, and analysed the prostate glands from the cohort.</p> <p>Results</p> <p>Six <it>Men1</it><sup>+/- </sup>mice (12.8%) developed prostate cancer, including two adenocarcinomas and four <it>in situ </it>carcinomas, while none of the control mice developed cancerous lesions. The expression of menin encoded by the <it>Men1 </it>gene was found to be drastically reduced in all carcinomas, and partial LOH of the wild-type <it>Men1 </it>allele was detected in three of the five analysed lesions. Using immunostaining for the androgen receptor and p63, a basal epithelial cell marker, we demonstrated that the menin-negative prostate cancer cells did not display p63 expression and that the androgen receptor was expressed but more heterogeneous in these lesions. Furthermore, our data showed that the expression of the cyclin-dependent kinase inhibitor CDKN1B (p27), a <it>Men1 </it>target gene known to be inactivated during prostate cell tumorigenesis, was notably decreased in the prostate cancers that developed in the mutant mice.</p> <p>Conclusion</p> <p>Our work suggests the possible involvement of <it>Men1 </it>inactivation in the tumorigenesis of the prostate gland.</p
ROCK Inhibitor Y-27632 Suppresses Dissociation-Induced Apoptosis of Murine Prostate Stem/Progenitor Cells and Increases Their Cloning Efficiency
Activation of the RhoA/ROCK signaling pathway has been shown to contribute to dissociation-induced apoptosis of embryonic and neural stem cells. We previously demonstrated that approximately 1 out of 40 LinβSca-1+CD49fhigh (LSC) prostate basal epithelial cells possess the capacities of stem cells for self-renewal and multi-lineage differentiation. We show here that treating LSC cells with the ROCK kinase inhibitor Y-27632 increases their cloning efficiency by 8 fold in an in vitro prostate colony assay. Y-27632 treatment allows prostate colony cells to replate efficiently, which does not occur otherwise. Y-27632 also increases the cloning efficiency of prostate stem cells in a prostate sphere assay and a dissociated prostate cell regeneration assay. The increased cloning efficiency is due to the suppression of the dissociation-induced, RhoA/ROCK activation-mediated apoptosis of prostate stem cells. Dissociation of prostate epithelial cells from extracellular matrix increases PTEN activity and attenuates AKT activity. Y-27632 treatment alone is sufficient to suppress cell dissociation-induced activation of PTEN activity. However, this does not contribute to the increased cloning efficiency, because Y-27632 treatment increases the sphere-forming unit of wild type and Pten null prostate cells to a similar extent. Finally, knocking down expression of both ROCK kinases slightly increases the replating efficiency of prostate colony cells, corroborating that they play a major role in the Y-27632 mediated increase in cloning efficiency. Our study implies that the numbers of prostate cells with stem/progenitor activity may be underestimated based on currently employed assays, supports that dissociation-induced apoptosis is a common feature of embryonic and somatic stem cells with an epithelial phenotype, and highlights the significance of environmental cues for the maintenance of stem cells
Integrated Expression Profiling and ChIP-seq Analyses of the Growth Inhibition Response Program of the Androgen Receptor
Background: The androgen receptor (AR) plays important roles in the development of male phenotype and in different human diseases including prostate cancers. The AR can act either as a promoter or a tumor suppressor depending on cell types. The AR proliferative response program has been well studied, but its prohibitive response program has not yet been thoroughly studied. Methodology/Principal Findings: Previous studies found that PC3 cells expressing the wild-type AR inhibit growth and suppress invasion. We applied expression profiling to identify the response program of PC3 cells expressing the AR (PC3-AR) under different growth conditions (i.e. with or without androgens and at different concentration of androgens) and then applied the newly developed ChIP-seq technology to identify the AR binding regions in the PC3 cancer genome. A surprising finding was that the comparison of MOCK-transfected PC3 cells with AR-transfected cells identified 3,452 differentially expressed genes (two fold cutoff) even without the addition of androgens (i.e. in ethanol control), suggesting that a ligand independent activation or extremely low-level androgen activation of the AR. ChIP-Seq analysis revealed 6,629 AR binding regions in the cancer genome of PC3 cells with an FDR (false discovery rate) cut off of 0.05. About 22.4 % (638 o
- β¦