494 research outputs found

    Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure

    Get PDF
    In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness (KIc) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10−2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. KIc of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that KIc depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of KIc is the distribution of grains rather than inherent microcracks in these rocks

    Tensile Strength of Geological Discontinuities Including Incipient Bedding, Rock Joints and Mineral Veins

    Get PDF
    Geological discontinuities have a controlling influence for many rock-engineering projects in terms of strength, deformability and permeability, but their characterisation is often very difficult. Whilst discontinuities are often modelled as lacking any strength, in many rock masses visible rock discontinuities are only incipient and have tensile strength that may approach and can even exceed that of the parent rock. This fact is of high importance for realistic rock mass characterisation but is generally ignored. It is argued that current ISRM and other standards for rock mass characterisation, as well as rock mass classification schemes such as RMR and Q, do not allow adequately for the incipient nature of many rock fractures or their geological variability and need to be revised, at least conceptually. This paper addresses the issue of the tensile strength of incipient discontinuities in rock and presents results from a laboratory test programme to quantify this parameter. Rock samples containing visible, natural incipient discontinuities including joints, bedding, and mineral veins have been tested in direct tension. It has been confirmed that such discontinuities can have high tensile strength, approaching that of the parent rock. Others are, of course, far weaker. The tested geological discontinuities all exhibited brittle failure at axial strain less than 0.5 % under direct tension conditions. Three factors contributing to the tensile strength of incipient rock discontinuities have been investigated and characterised. A distinction is made between sections of discontinuity that are only partially developed, sections of discontinuity that have been locally weathered leaving localised residual rock bridges and sections that have been ‘healed’ through secondary cementation. Tests on bedding surfaces within sandstone showed that tensile strength of adjacent incipient bedding can vary considerably. In this particular series of tests, values of tensile strength for bedding planes ranged from 32 to 88 % of the parent rock strength (intact without visible discontinuities), and this variability could be attributed to geological factors. Tests on incipient mineral veins also showed considerable scatter, the strength depending upon the geological nature of vein development as well as the presence of rock bridges. As might be anticipated, tensile strength of incipient rock joints decreases with degree of weathering as expressed in colour changes adjacent to rock bridges. Tensile strengths of rock bridges (lacking marked discolouration) were found to be similar to that of the parent rock. It is concluded that the degree of incipiency of rock discontinuities needs to be differentiated in the process of rock mass classification and engineering design and that this can best be done with reference to the tensile strength relative to that of the parent rock. It is argued that the science of rock mass characterisation may be advanced through better appreciation of geological history at a site thereby improving the process of prediction and extrapolating properties

    ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen

    Get PDF
    The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semicircular bend specimen is herein presented. The specimen is semicircular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied

    Prediction of strength and deformability of an interlocked blocky rock mass using UDEC

    Get PDF
    The accurate prediction of strength and deformability characteristics of a rock mass is very challenging. In practice, properties of a rock mass are often estimated from available empirical relationships based on the uniaxial compressive strength (UCS). However, UCS does not always give a good indication of in-situ rock mass strength and deformability. The aim of this paper is to present a methodology to predict the strength and deformability of a jointed rock mass using UDEC (universal distinct element code). In the study, the rock mass is modelled as an assemblage of deformable blocks that can yield as an intact material and/or slide along pre-defined joints within the rock mass. A range of numerical simulations of UCS and triaxial tests were conducted on rock mass samples in order to predict the equivalent mechanical properties for the rock mass under different loading directions. Results are compared against the deformability parameters obtained by analytical methods

    Chalk-steel Interface testing for marine energy foundations

    Get PDF
    The Energy Technology Partnership (ETP) and Lloyd’s Register EMEA are gratefully acknowledged for the funding of this project. The authors would also like to acknowledge the support of the European Regional Development Fund (ERDF) SMART Centre at the University of Dundee that allowed purchase of the equipment used during this study. The views expressed are those of the authors alone, and do not necessarily represent the views of their respective companies or employing organizations.Peer reviewedPostprin

    Evaluation of Mode I Fracture Toughness Assisted by the Numerical Determination of K-Resistance

    Get PDF
    The fracture toughness of a rock often varies depending on the specimen shape and the loading type used to measure it. To investigate the mode I fracture toughness using semi-circular bend (SCB) specimens, we experimentally studied the fracture toughness using SCB and chevron bend (CB) specimens, the latter being one of the specimens used extensively as an International Society for Rock Mechanics (ISRM) suggested method, for comparison. The mode I fracture toughness measured using SCB specimens is lower than both the level I and level II fracture toughness values measured using CB specimens. A numerical study based on discontinuum mechanics was conducted using a two-dimensional distinct element method (DEM) for evaluating crack propagation in the SCB specimen during loading. The numerical results indicate subcritical crack growth as well as sudden crack propagation when the load reaches the maximum. A K-resistance curve is drawn using the crack extension and the load at the point of evaluation. The fracture toughness evaluated by the K-resistance curve is in agreement with the level II fracture toughness measured using CB specimens. Therefore, the SCB specimen yields an improved value for fracture toughness when the increase of K-resistance with stable crack propagation is considered

    Downwearing rates on shore platforms of different calcareous lithotypes

    Get PDF
    Vertical lowering (downwearing) of shore platform surfaces is a very important mechanism in their morphological evolution albeit much remains incompletely understood. The efficacy of mechanical and chemical weathering acting on a given substrate, together with erosional processes, influences downwearing rates. In order to determine the relationship between lithotypes and downwearing rates, data collected from a Transverse Micro-erosion Meter were obtained for shore platforms of three different calcareous lithotypes (biocalcarenite, calcarenite and carbonated siltstone) along the central Algarve coast (Southern Portugal). Downwearing rates ranged between 0.096 mm year−1 and 1.676 mm year−1 in biocalcarenite and weakly cemented calcarenite, respectively. In addition, physical properties of the rocks comprising the platforms were measured, including uniaxial compressive strength (as determined by the Point Load Test), porosity, and calcium carbonate content. The results show that downwearing depends primarily on the intrinsic properties of the substrate. Porosity, in particular, acts in two ways: (i) it tends to weaken the substrate; and, (ii) it controls the downward extent of the water percolation and therefore the depth of the weathering mantle subject to erosion by waves and currents.Portuguese Foundation for Science and Technology (FCT) through Research Projects PTDC/CTEGEX/70448/2006 (BISHOP) and PTDC/CTE-GIX/111230/2009 (EROS)

    The three stages of stress relaxation - Observations for the time-dependent behaviour of brittle rocks based on laboratory testing

    Get PDF
    Underground openings can experience time-dependent deformations and stress changes. Studying time-dependent rock behaviour is commonly done with static load (creep) tests in the laboratory which typically exhibit three distinct stages of behaviour. In this study relaxation tests were conducted to examine if three stages also exist under constant strain boundary conditions and to understand how the relaxation behaviour changes as the driving stress to strength ratio is increased. Tests were conducted on two types of limestone. At different load levels similar stress-time responses were measured indicating three distinct stages of stress relaxation. The first stage of stress relaxation (RI) where the stress relaxes with a decreasing rate is followed by the second stage (RII) in which the stress decrease approaches a constant rate and in the third stage (RIII) no further stress relaxation takes place. In the first stage 55% to 95% of the total stress relaxation takes place. The test results are compared with literature data to understand the influence of the stiffness on the magnitude and time to reach the maximum stress relaxation. Relaxation tests could be used to derive numerical model inputs to describe the time-dependent behaviour in a manner similar to static load tests

    Characterisation and multifaceted anisotropy assessment of Corvio sandstone for geological CO2 storage studies

    Get PDF
    We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock-testing standard for well-constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length-to-diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ?10 and ?18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ?10 MPa and then stabilises at ?1 mD. Ultrasonic P- and S-wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation

    Physical mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy)

    Get PDF
    The present work aims to study the consolidating and protective chemical treatments of the Pietra Cantone, a Miocenic (lower Tortonian) limestone widely used in important monuments and historical buildings of Cagliari (southern Sardinia, Italy). Similar limestones of the same geological period have also been used in several important monuments of Mediterranean area, i.e., Malta and Gozo Islands, Matera (central Basilicata, Italy), Lecce (southern Puglia, Italy) and Balearic Islands (Spain). The Pietra Cantone limestone shows problems of chemical–physical decay, due to their petrophysical and compositional char- acteristics: high porosity (on average 28–36 vol%), low cemented muddy-carbonate matrix, presence of phyllosil- icates and sindepositional sea salts (\3%). So, after placed in the monument, this stone is easily alterable by weath- ering chemical processes (e.g., carbonate dissolution and sulfation) and also by cyclic mechanisms of crystalliza- tion/solubilization of salts and hydration/dehydration of hygroscopic phases of the clay component. To define the mineralogical-petrographic features (composition, texture) of limestone, the clay and salt crystalline phases, the optical microscope in polarized light and diffraction anal- ysis were used. To define the petrophysical characteristics (i.e., shape and size distribution of porosity, surface area(SBET), matrix microstructures, rock composition) and interactions of chemical treatments with rock, SEM–EDS analysis and N2 porosimetry with BET and BJH methods were used. To evaluate the efficacy of Na/K-silicates, ethyl silicate consolidants and protective nano-molecular silane monomer water repellent, the mechanical strengths (uni- axial compressive strength, point load and flexural resis- tance), water/helium open porosity, water absorption and vapour permeability data determined before and after the chemical treatments of the Pietra Cantone samples from monument were compared
    corecore