176 research outputs found
Lateral scale calibration for focus variation microscopy
Areal surface texture measuring instruments can be calibrated by determining a set of metrological characteristics currently in the final stages of standardisation. In this paper, amplification, linearity and perpendicularity characteristics have been determined to calibrate the lateral performance of a focus variation microscope. The paper presents a novel and low-cost material measure and procedures that are used to determine the characteristics. The material measure is made of stainless steel with a cross-grating grid of hemispherical grooves. The design, manufacturing and calibration of the material measure are discussed. The (20 × 20) mm grid is measured with and without image stitching. The results show that the proposed material measure and procedures can be used to determine the error of the amplification, linearity and perpendicularity characteristics. In addition, the lateral stage error can be significantly reduced by measurement with image stitching
Characterisation of the topography of metal additive surface features with different measurement technologies
The challenges of measuring the surface topography of metallic surfaces produced by additive manufacturing are investigated. The differences between measurements made using various optical and non-optical technologies, including confocal and focus-variation microscopy, coherence scanning interferometry and x-ray computed tomography, are examined. As opposed to concentrating on differences which may arise through computing surface texture parameters from measured topography datasets, a comparative analysis is performed focussing on investigation of the quality of the topographic reconstruction of a series of surface features. The investigation is carried out by considering the typical surface features of a metal powder-bed fusion process: weld tracks, weld ripples, attached particles and surface recesses. Results show that no single measurement technology provides a completely reliable rendition of the topographic features that characterise the metal powder-bed fusion process. However, through analysis of measurement discrepancies, light can be shed on where instruments are more susceptible to error, and why differences between measurements occur. The results presented in this work increase the understanding of the behaviour and performance of areal topography measurement, and thus promote the development of improved surface characterisation pipelines
Review of the mathematical foundations of data fusion techniques in surface metrology
The recent proliferation of engineered surfaces, including freeform and structured surfaces, is challenging current metrology techniques. Measurement using multiple sensors has been proposed to achieve enhanced benefits, mainly in terms of spatial frequency bandwidth, which a single sensor cannot provide. When using data from different sensors, a process of data fusion is required and there is much active research in this area. In this paper, current data fusion methods and applications are reviewed, with a focus on the mathematical foundations of the subject. Common research questions in the fusion of surface metrology data are raised and potential fusion algorithms are discussed
Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines
To evaluate the accumulation of trace elements (TE) by vegetables produced in the vicinity of abandoned pyrite mines, eighteen different small farms were selected near three mines from the Portuguese sector of the Iberian Pyrite Belt (Sao Domingos, Aljustrel and Lousal). Total and bioavailable As, Cu, Pb, and Zn concentrations were analyzed in the soils, and the same TE were analyzed in three different vegetables, lettuce (Lactuca sativa), coriander (Coriandrum sativum), and cabbage (Brassica oleracea), collected at the same locations. The soils were contaminated with As, Cu, Pb, and Zn, since their total concentrations exceeded the considered soil quality guideline values for plant production in the majority of the sampling sites. The maximum total concentrations for those TE were extremely high in some of the sampling sites (e.g. 1851 mg As kg(-1) in Sao Domingos, 1126 mg Cu kg(-1) in Aljustrel, 4946 mg Pb kg(-1) in Sao Domingos, and 1224 mg Zn kg(-1) in Aljustrel). However, the soils were mainly circumneutral, a factor that contributes to their low bioavailable fractions. As a result, generally, the plants contained levels of these elements characteristic of uncontaminated plants, and accumulation factors for all elements <1, typical of excluder plants. Furthermore, the estimated daily intake (EDI) for Cu and Zn, through the consumption of these vegetables, falls below the recommended upper limit for daily intake of these elements. The sampling site that stood out from the others was located at Sao Joao de Negrilhos (Aljustrel), where bioavailable Zn levels were higher, a consequence of the slight acidity of the soil. Therefore, the Zn content in vegetables was also higher, characteristic of contaminated plants, emphasizing the risk of Zn entering the human food chain via the consumption of crops produced on those soils. (C) 2013 Elsevier B.V. All rights reserved.info:eu-repo/semantics/publishedVersio
Affect Recognition using Psychophysiological Correlates in High Intensity VR Exergaming
User experience estimation of VR exergame players by recognising their affective state could enable us to personalise and optimise their experience. Affect recognition based on psychophysiological measurements has been successful for moderate intensity activities. High intensity VR exergames pose challenges as the effects of exercise and VR headsets interfere with those measurements. We present two experiments that investigate the use of different sensors for affect recognition in a VR exergame. The first experiment compares the impact of physical exertion and gamification on psychophysiological measurements during rest, conventional exercise, VR exergaming, and sedentary VR gaming. The second experiment compares underwhelming, overwhelming and optimal VR exergaming scenarios. We identify gaze fixations, eye blinks, pupil diameter and skin conductivity as psychophysiological measures suitable for affect recognition in VR exergaming and analyse their utility in determining affective valence and arousal. Our findings provide guidelines for researchers of affective VR exergames.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 665992 </p
Oat–buckwheat breads – technological quality, staling and sensory properties
peer reviewedThe technological and sensory properties and the staling of breads made from oat flour (OF) and buckwheat flour
(BF) were analysed. Significant differences in protein and ash content were found in the experimental breads
due to significant differences in the composition of the BF and OF used. As the proportion of BF in the recipe
increased, a deterioration in the technological properties of the dough and bread as well as an increase in the
crumb hardness were observed. The presence of OF in the recipe increased the bread volume, significantly
enhanced the lightness of the crust and crumb and improved the overall sensory quality. The OF used in the
recipe decreased the starch retrogradation enthalpy value, which is strongly related to a delay in bread staling.
The proposed bakery products can be attractive to consumers who are looking for new food products
- …