42 research outputs found

    Experimental behaviour of RC beams shear strengthened with NSM CFRP laminates

    Get PDF
    The near-surface mounted (NSM) is one of the most recent techniques applied for the increase of the shear resistance of reinforced concrete (RC) beams. This technique involves the installation of carbon fibre reinforcement polymers (CFRP) laminates into thin slits open on the concrete cover of the elements to strengthen. The effectiveness of this technique for the shear strengthening of T crosssection RC beams was assessed by experimental research. For this purpose, three inclinations of laminates were tested (45Âş, 60Âş and 90Âş) and, for each inclination, three percentages of CFRP were applied in RC beams with a percentage of steel stirrups of 0.10% (qsw). The highest percentage of laminates was designed to provide a maximum load similar to the reference RC beam, which was reinforced with a reinforcement ratio of steel stirrups of 0.28% (qsw = 0.28%). For each percentage of laminates, a homologous RC beam strengthened with unidirectional U-shaped CFRP wet lay-up sheets (discrete strips) applied according to the externally bonded reinforcement technique was also tested, with the purpose of comparing the effectiveness of these two CFRP-strengthening techniques. To evaluate the influence of the percentage of steel stirrups in the effectiveness of the NSM technique, some of the abovementioned CFRP configurations were also applied in beams with qsw = 0.17%The authors wish to acknowledge the support provided by the 'Empreiteiros Casais', Degussa, S&P (R) and Secil (Unibetao, Braga). The study reported in this paper forms a part of the research program supported by FCT, PTDC/ECM/73099/2006

    Flexural strengthening of RC continuous slab strips using NSM CFRP laminates

    Get PDF
    To assess the effectiveness of the near surface mounted (NSM) technique, in terms of load carrying and moment redistribution capacities, for the flexural strengthening of continuous reinforced concrete (RC) slabs, an experimental program was carried out. The experimental program is composed of three series of three slab strips of two equal span length, in order to verify the possibility of increasing the negative (at the intermediate support region) resisting bending moment in 25% and 50% and maintaining moment redistribution levels of 15%, 30% and 45%. Though the flexural resistance of the NSM strengthened sections has exceeded the target values, the moment redistribution was relatively low, and the increase of the load carrying capacity of the strengthened slabs did not exceed 25%. This experimental program is analyzed to highlight the possibilities of NSM technique for statically indeterminate RC slabs in terms of flexural strengthening effectiveness, moment redistribution and ductility performance. Using a FEM-based computer program, which predictive performance was appraised using the obtained experimental results, a high effective NSM flexural strengthening strategy is proposed, capable of enhancing the slab’s load carrying capacity and maintaining high levels of ductility.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The first Author acknowledges the financial support of National Council for Scientific and Technological Development (CNPq) - Brazil, Ph.D. Grant no. 200953/2007-9. The second Author wishes to acknowledge the support provided by FCT, by means of the SFRH/BSAB/818/2008 and SFRH/BSAB/913/2009 sabbatical grants

    Structure-property relationships in structural glass fibre reinforced composites from unsaturated polyester and inherently fire retardant phenolic resin matrix blends

    Get PDF
    The effects of matrices from co-cured blends of an unsaturated polyester (UP) with inherently fire-retardant and char-forming phenolic resoles (PH) on the mechanical and fire performances of resultant glass fibre-reinforced composites have been investigated. Three different phenolic resoles with increasing order of compatibility with UP have been used. These are: (i) an ethanol soluble resin, (PH-S), (ii) an epoxy-functionalized resin (PH-Ep), and (iii) an allyl-functionalized resin (PH-Al). The mechanical properties of the composites increased with increasing compatibility with two resin types as might be expected, but not previously demonstrated. However, even with the least compatible resin (PH-S), the impact properties were unaffected and the flexural/tensile properties while reduced, were still acceptable for certain applications. Fire properties were however, in reverse order as previously observed in cast resin samples from these composites. Moreover, the reduction in flammability was less compared to those of the cast resin samples, reported previously, explained here based on the insulating effect of glass fibre reinforcement

    Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling

    Get PDF
    This paper was published in the journal Polymer Testing and the definitive published version is available at http://dx.doi.org/10.1016/j.polymertesting.2016.12.016.© 2016 Elsevier LtdAn experimental study of temperature-dependent mechanical behaviour of Poly-methyl methacrylate (PMMA) was performed at a range of temperatures (20 °C, 40 °C, 60 °C and 80 °C) below its glass transition point (108 °C) under uniaxial tension and three-point bending loading conditions. This study was accompanied by simulations aimed at identification of material parameters for two different constitutive material models. Experimental flow curves obtained for PMMA were used in elasto-plastic analysis, while a sim-flow optimization tool was employed for a two-layer viscoplasticity model. The temperature increase significantly affected mechanical behaviour of PMMA, with quasi-brittle fracture at room temperature and super-plastic behaviour (ε>110%) at 80 °C. The two-layer viscoplasticity material model was found to agree better with the experimental data obtained for uniaxial tension than the elasto-plastic description
    corecore