24 research outputs found

    Manure amendments for mitigation of dairy ammonia and greenhouse gas emissions: preliminary screening

    Get PDF
     Amendments can be practical and cost-effective for reducing ammonia [NH3] and greenhouse gas [GHG] emissions from dairy manure.  In this study, the effect of 22 amendments on NH3 and GHG carbon dioxide [CO2], methane [CH4] and nitrous oxide [N2O] emissions from dairy manure were simultaneous investigated at room temperature (20℃).  Dairy manure slurry (2 kg; 1:1.7 urine: feces; 12% total solids) was treated with various amendments, representing different classes of product, following the suppliers’ recommended rates.  In this screening of products, one sample of each amendment was evaluated along with untreated manure slurry with repeated measurements over 24 h.  Gas emissions were measured after short (3 d) and medium (30 d) storage duration using a photoacoustic multi-gas analyzer.  Six amendment products that acted as microbial digest, oxidizing agent, masking agent or adsorbent significantly reduced NH3 by >10% (P = 0.04 to <0.001) after both 3 and 30 d.  Microbial digest/enzymes with nitrogen substrate appeared effective in reducing CH4 fluxes for both storage times.  Most of the masking agents and disinfectants significantly increased CH4 in both storage periods (P = 0.04 to <0.001).  For both CH4 and CO2 fluxes, aging the manure slurry for 30 d significantly reduced gas production by 11 to 100% (P<0.001).  While some products reduced emissions at one or both storage times, results showed that the ability of amendments to mitigate emissions from dairy manure is finite and re-application may be required even for a static amount of manure.  Simultaneous measurement of gases identified glycerol as a successful NH3 reduction agent while increasing CH4 in contrast to a digestive-microbial product that significantly reduced CH4 while enhancing NH3 release.Keywords: methane, greenhouse gas, emission, amendment, additive, dairy manure, ammonia, mitigatio

    Evaluation of odor emissions from amended dairy manure: preliminary screening

    Get PDF
    Manure amendments have shown variable effectiveness in reducing odor.  Twenty-two amendments were applied to dairy manure then evaluated for odor reduction efficacy after storage at 20℃ for 3 d and 30 d.  Amendments represented differing primary modes of action including: microbial digestive, oxidizing, disinfecting, masking, and adsorbent.  Each amendment was added to 2 kg dairy manure (1:1.7 urine:feces; 12% total solids) following recommended rates.  In this preliminary screening, one sample (n=1) of each amendment was evaluated along with untreated manure (Control).  Odor emission from each treated manure and Control was estimated twice by five or six qualified odor assessors (n=10 or 12) after each storage duration, using an international standard for triangular forced-choice olfactometry.  Odor quality was defined using hedonic tone, Labeled Magnitude Scale and ASTM methods for supra-threshold odor intensity, and an odor character wheel for descriptors.  For selected treatments, odor emissions were significantly reduced relative to Control at 30 d versus 3 d incubation (P<0.0001).  However, no amendment was significantly effective for both incubation times.  Likewise, for all amendments tested, aging the manure slurry for 30 d significantly reduced odor emission and odor intensity (P<0.0001).  A proprietary microbial amendment (Alken Enz-Odor + Clear Flo: aerobic/ facultative microbes with growth factors), disinfectant (hydrogen peroxide), and masking agent (Hyssopus officinalis essential oil) provided significant short-term control of odor (P <0.06).  However, after 30 d seven amendments significantly increased odor emission (P<0.02) while only two amendments offered a significant efficacy (P<0.0001): a proprietary microbial aerobic/facultative product (Bio-Regen) and a proprietary mix of chemicals (Greaseater), both with weekly re-application.  Hedonic tone observations suggested an improvement to “slightly to moderately unpleasant” smell versus untreated manure for all amendments except clinoptilolite zeolite adsorbent.  Hedonic tone improvement was correlated with reduced manure odor supra-threshold intensity.Keywords: odor, hedonic tone, odor strength, amendments, additives, dairy manure, United States of Americ
    corecore