30 research outputs found
Impaired Function of Treg Cells
Neonatal thymectomy (Tx) in certain mouse strains is known to induce organ-specific autoimmunity due to impaired functions of T cells, including Foxp3+ regulatory T (Treg) cells in the thymus. The precise mechanism underlying the induction of autoimmunity by neonatal Tx remains unclear. One possibility is that depletion of Treg cells breaks down peripheral tolerance. We examined the functions of Treg cells by using a murine Sjögren’s syndrome (SS) model, NFS/sld mice that underwent neonatal Tx. The ratio of Treg cells to effector memory phenotype T cells in Tx mice was significantly lower than that of non-Tx mice. In addition, in vitro induction of peripherally induced Treg cells by transforming growth factor-β (TGF-β) using naïve T cells from SS model mice was severely impaired. The mRNA expression of TGF-β receptor I, II, and Smad3 and -4 in the TGF-β-induced signal transduction pathway of Treg cells in this SS model were lower than those of control mice. In addition, Treg cells in this SS model exhibited an IFN-γ-producing Th1-like phenotype that resembled effector T cells. In conclusion, these results suggest that abnormal expansion and differentiation of Treg cells and inflammatory cytokines produced by Treg cells contribute to the development of autoimmunity
Resident Macrophages in SS
Macrophages (MΦs) are critical regulators of immune response and serve as a link between innate and acquired immunity. The precise mechanism of involvement of tissue-resident MΦs in the pathogenesis of autoimmune diseases is not clear. Here, using a murine model for Sjögren’s syndrome (SS), we investigated the role of tissue-resident MΦs in the onset and development of autoimmunity. Two unique populations of CD11bhigh and CD11blow resident MΦs were observed in the target tissue of the SS model. Comprehensive gene expression analysis of chemokines revealed effective production of CCL22 by the CD11bhigh MΦs. CCL22 upregulated the migratory activity of CD4+ T cells by increasing CCR4, a receptor of CCL22, on T cells in the SS model. In addition, CCL22 enhanced IFN-γ production of T cells of the SS model, thereby suggesting that CCL22 may impair the local immune tolerance in the target organ of the SS model. Moreover, administration of anti-CCL22 antibody suppressed autoimmune lesions in the SS model. Finally, histopathological analysis revealed numerous CCL22-producing MΦs in the minor salivary gland tissue specimens of the SS patients. CCL22-producing tissue-resident MΦs may control autoimmune lesions by enhancing T cell response in the SS model. These results suggest that specific chemokines and their receptors may serve as novel therapeutic or diagnostic targets for SS
CD4+ T-cell-dependent differentiation of CD23+ follicular B cells contributes to the pulmonary pathology in a primary Sjögren’s syndrome mouse model
Introduction: Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease that affects the function of exocrine glands, such as the lacrimal and the salivary glands. Extraglandular lesions and malignant lymphoma also occur during the progressive stage of pSS. We have, herein, focused on the pulmonary lesions of pSS and have aimed clarifying their pathophysiological mechanism by comparing the glandular with the extraglandular lesions observed in a mouse model of pSS.
Results: The histopathological analysis of lung tissues obtained from NFS/sld mice that have undergone neonatal thymectomy was performed. Moreover, in vivo and in vitro experiments were conducted along with immunological analyses in order to characterize the unique phenotypes of the pulmonary lesions identified in these pSS model mice. Inflammatory lesions with a bronchus-associated lymphoid tissue-like structure were identified in the lungs of pSS model mice. In addition, relative to salivary gland lesions, pulmonary lesions showed increased CD23+ follicular B (FB) cells. In vitro and pulmonary B cells were more readily driven to CD23+ FB cell phenotype than salivary gland B cells in pSS model mice. Furthermore, the CD23+ FB cell differentiation was found to be enhanced in a CD4+ T-cell-dependent manner under a Th2-type condition in the lungs of herein examined pSS model mice.
Discussion: A Th2-type response in the pSS lung may promote the progression of autoimmune lesions through an enhanced abnormal differentiation of B cells
Effect of CNT exposure on alveolar macrophages
Background
Nanomaterials are widely used in various fields. Although the toxicity of carbon nanotubes (CNTs) in pulmonary tissues has been demonstrated, the toxicological effect of CNTs on the immune system in the lung remains unclear.
Methods and finding
In this study, exposure to Taquann-treated multi-walled CNTs (T-CNTs) was performed using aerosols generated in an inhalation chamber. At 12 months after T-CNT exposure, alveolar inflammation with macrophage accumulation and hypertrophy of the alveolar walls were observed. In addition, fibrotic lesions were enhanced by T-CNT exposure. The macrophages in the bronchoalveolar lavage fluid of T-CNT-exposed mice were not largely shifted to any particular population, and were a mixed phenotype with M1 and M2 polarization. Moreover, the alveolar macrophages of T-CNT-exposed mice produced matrix metalloprotinase-12.
Conclusions
These results suggest that T-CNT exposure promoted chronic inflammation and fibrotic lesion formation in profibrotic macrophages for prolonged periods
原発性シェーグレン症候群モデルマウスにおいて唾液腺Natural killer細胞の恒常性の破綻がIFN-γを介して自己免疫病変を増強する
Objective: Innate lymphoid cells (ILCs), including natural killer (NK) cells, ILC1, ILC2, lymphoid tissue-inducer (LTi) cells, and ILC3 cell, play a key role in various immune responses. Primary Sjögren’s syndrome (pSS) is an autoimmune disease characterized by chronic inflammation of exocrine glands, such as the lacrimal and salivary glands (SGs). The role of NK cells among ILCs in the pathogenesis of pSS is still unclear. In this study, the characteristics and subsets of NK cells in the salivary gland (SG) tissue were analyzed using a murine model of pSS.
Methods: Multiple phenotypes and cytotoxic signature of the SG NK cells in control and pSS model mice were evaluated by flow cytometric analysis. Intracellular expression of interferon-γ (IFN-γ) among T cells and NK cells from the SG tissues was compared by in vitro experiments. In addition, pathological analysis was performed using anti-asialo-GM1 (ASGM1) antibody (Ab)-injected pSS model mice.
Results: The number of conventional NK (cNK) cells in the SG of pSS model mice significantly increased compared with that in control mice at 6 weeks of age. The production level of IFN-γ was significantly higher in SG NK cells than in SG T cells. The depletion of NK cells by ASGM1 Ab altered the ratio of tissue resident NK (rNK) cells to cNK cells, which inhibited the injury to SG cells with the recovery of saliva secretion in pSS model mice.
Conclusion: The results indicate that SG cNK cells may enhance the autoreactive response in the target organ by upregulating of IFN-γ, whereas SG rNK cells protect target cells against T cell cytotoxicity. Therefore, the activation process and multiple functions of NK cells in the target organ could be helpful to develop potential markers for determining autoimmune disease activity and target molecules for incurable immune disorders
シェーグレン症候群疾患モデルマウスにおける眼病変の病理学的解析
Sjögren’s syndrome (SS) is a systemic autoimmune disease characterized by severe inflammation of exocrine glands such as the salivary and lacrimal glands. When it affects the lacrimal glands, many patients experience keratoconjunctivitis due to severely dry eyes. This study investigated the pathological and immunological characteristics of ocular lesions in a mouse model of SS. Corneal epithelial injury and hyperplasia were confirmed pathologically. The number of conjunctival mucin-producing goblet cells was significantly decreased in the SS model mice compared with control mice. Expression levels of transforming growth factor (TGF)-β, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and C-X-C motif chemokine (CXCL) 12 were significantly higher in the corneal epithelium of the SS model mice than in control mice. Inflammatory lesions were observed in the Harderian, intraorbital, and extraorbital lacrimal glands in the SS model mice, suggesting that the ocular glands were targeted by an autoimmune response. The lacrimal glands of the SS model mice were infiltrated by cluster of differentiation (CD)4+ T cells. Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significantly increased mRNA expression of TNF-α, TGF-β, CXCL9, and lysozyme in the extraorbital lacrimal glands of the SS model mice compared with control mice. These results add to the understanding of the complex pathogenesis of SS and may facilitate development of new therapeutic strategies
Advantage of Handwriting Over Typing on Learning Words: Evidence From an N400 Event-Related Potential Index
The growing implementation of digital education comes with an increased need to understand the impact of digital tools on learning. Previous behavioral studies have shown that handwriting on paper is more effective for learning than typing on a keyboard. However, the impact of writing with a digital pen on a tablet remains to be clarified. In the present study, we compared learning by handwriting with an ink pen on paper, handwriting with a digital pen on a tablet, and typing on a keyboard. Behavioral and electroencephalographic indices were measured immediately after learning with each writing tool. The moods of the subjects during the training were also assessed. The participants were divided according to their use of digital pen in their everyday lives, allowing us to take into account the effect of the familiarity with the digital pen on the learning process (familiar group vs. unfamiliar group). We performed an EEG experiment applying a repetition priming paradigm. In each trial, a learned foreign language word (prime word) and a mother tongue word (target word) were consecutively presented. The target word was either semantically identical to the prime word (repetitive condition) or different (non-repetitive condition). We assumed that a larger priming effect on N400 reflects larger learning progress. The familiar group showed a greater N400 priming effect for words learned with the digital or ink pen than those learned with the keyboard. The unfamiliar group showed the greater N400 priming effect for words learned with the ink pen compared with words learned by typing. In addition, positive mood during learning was significantly higher during handwriting than during typing, regardless of the groups. On the other hand, the behavioral indices were not influenced by the writing tool. These results suggest that the movements involved in handwriting allow a greater memorization of new words. The advantage of handwriting over typing might also be caused by a more positive mood during learning. Finally, our results show that handwriting with a digital pen and tablet can increase the ability to learn compared with keyboard typing once the individuals are accustomed to it
ピエゾ型機械受容チャネル1による歯の発生過程におけるWNTシグナルと一次繊毛発現の調整
Signal transmission from the mechanical forces to the various intracellular activities is a fundamental process during tissue development. Despite their critical role, the mechanism of mechanical forces in the biological process is poorly understood. In this study, we demonstrated that in the response to hydrostatic pressure (HP), the piezo type mechanosensitive ion channel component 1 (PIEZO1) is a primary mechanosensing receptor for odontoblast differentiation through coordination of the WNT expression and ciliogenesis. In stem cells from human exfoliated deciduous teeth (SHED), HP significantly promoted calcium deposition as well as the expression of odontogenic marker genes, PANX3 and DSPP, and WNT related-genes including WNT5b and WNT16, whereas HP inhibited cell proliferation and enhanced primary cilia expression. WNT signaling inhibitor XAV939 and primary cilia inhibitor chloral hydrate blocked the HP-induced calcium deposition. The PIEZO1 activator Yoda1 inhibited cell proliferation but induced ciliogenesis and WNT16 expression. Interestingly, HP and Yoda1 promoted nuclear translocation of RUNX2, whereas siRNA-mediated silencing of PIEZO1 decreased HP-induced nuclear translocation of RUNX2. Taken together, these results suggest that PIEZO1 functions as a mechanotransducer that connects HP signal to the intracellular signalings during odontoblast differentiation