1,225 research outputs found

    Beyond crystallography: diffractive imaging using coherent x-ray light sources

    Get PDF
    X-ray crystallography has been central to the development of many fields of science over the past century. It has now matured to a point that as long as good-quality crystals are available, their atomic structure can be routinely determined in three dimensions. However, many samples in physics, chemistry, materials science, nanoscience, geology, and biology are noncrystalline, and thus their three-dimensional structures are not accessible by traditional x-ray crystallography. Overcoming this hurdle has required the development of new coherent imaging methods to harness new coherent x-ray light sources. Here we review the revolutionary advances that are transforming x-ray sources and imaging in the 21st century

    Imaging characteristics and treatment of a penetrating brain injury caused by an oropharyngeal foreign body in a dog

    Get PDF
    A 4-year-old Border collie was presented with one episode of collapse, altered mentation, and a suspected pharyngeal stick injury. Magnetic resonance imaging (MRI) and computed tomography showed a linear foreign body penetrating the right oropharynx, through the foramen ovale and the brain parenchyma. The foreign body was surgically removed and medical treatment initiated. Complete resolution of clinical signs was noted at recheck 8 weeks later. Repeat MRI showed chronic secondary changes in the brain parenchyma. To the authors' knowledge, this is the first report of the advanced imaging findings and successful treatment of a penetrating oropharyngeal intracranial foreign body in a dog

    Comprehensive Measurements of the Volume-phase Holographic Gratings for the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will be employed on the Mayall 4 m Telescope to study the expansion history of the universe. In the era of massively multiplexed fiber-fed spectrographs, DESI will push the boundaries of fiber spectroscopy with a design capable of taking 5000 simultaneous spectra over 360 to 980 nm. The instrument utilizes a suite of three-channel spectrographs, where volume-phase holographic (VPH) gratings provide dispersions. Thirty-six VPH gratings were produced and their performances were evaluated at the Lawrence Berkeley National Laboratory. We present the design and the evaluation tests for the production run of the VPH gratings, verifying the incidence angle, area-weighted efficiency, and wavefront errors (WFEs). We also present the specialized test set-up developed on-site to assess the grating performances. Measurements of the VPH gratings show high consistency in area-weighted efficiency to within an rms of 2% for the red and near-infrared and 6.2% for the blue gratings. Measured WFEs also showed high consistency per bandpass. Comprehensive evaluations show that the VPH gratings meet DESI performance requirements and have been approved for integration

    Inferring stabilizing mutations from protein phylogenies : application to influenza hemagglutinin

    Get PDF
    One selection pressure shaping sequence evolution is the requirement that a protein fold with sufficient stability to perform its biological functions. We present a conceptual framework that explains how this requirement causes the probability that a particular amino acid mutation is fixed during evolution to depend on its effect on protein stability. We mathematically formalize this framework to develop a Bayesian approach for inferring the stability effects of individual mutations from homologous protein sequences of known phylogeny. This approach is able to predict published experimentally measured mutational stability effects (ΔΔG values) with an accuracy that exceeds both a state-of-the-art physicochemical modeling program and the sequence-based consensus approach. As a further test, we use our phylogenetic inference approach to predict stabilizing mutations to influenza hemagglutinin. We introduce these mutations into a temperature-sensitive influenza virus with a defect in its hemagglutinin gene and experimentally demonstrate that some of the mutations allow the virus to grow at higher temperatures. Our work therefore describes a powerful new approach for predicting stabilizing mutations that can be successfully applied even to large, complex proteins such as hemagglutinin. This approach also makes a mathematical link between phylogenetics and experimentally measurable protein properties, potentially paving the way for more accurate analyses of molecular evolution

    The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Get PDF
    BACKGROUND: Butein (3,4,2',4'-tetrahydroxychalone), a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. METHODS: We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL) or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL). In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL). Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL). RESULTS: Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also significantly reduced or abolished when the tumor cells were co-cultured with fibroblasts that had been pre-treated with a fixed dose of butein. CONCLUSION: We conclude that fibroblasts pre-treated with non-toxic doses of butein (a natural herbal compound) no longer support the clonogenic growth of small numbers of primary breast cancer cells seeded into co-cultures. These results suggest that interference with the interaction between fibroblasts and breast cancer cells by the natural herbal compound, butein, should be further investigated as a novel experimental approach for possibly suppressing the growth of micrometastases of breast cancer

    Gastrointestinal failure in intensive care: a retrospective clinical study in three different intensive care units in Germany and Estonia

    Get PDF
    BACKGROUND: While gastrointestinal problems are common in ICU patients with multiple organ failure, gastrointestinal failure has not been given the consideration other organ systems receive. The aim of this study was to evaluate the incidence of gastrointestinal failure (GIF), to identify its risk factors, and to determine its association with ICU mortality. METHODS: A retrospective analysis of adult patients (n = 2588) admitted to three different ICUs (two ICUs at the university hospital Charité-Universitätsmedizin Berlin, Germany and one at Tartu University Clinics, Estonia) during the year 2002 was performed. Data recorded in a computerized database were used in Berlin. In Tartu, the data documented in the patients' charts was retrospectively transferred into a similar database. GIF was defined as documented gastrointestinal problems (food intolerance, gastrointestinal haemorrhage, and/or ileus) in the patient data at any period of their ICU stay. ICU mortality, length of stay, and duration of mechanical ventilation were assessed as outcome parameters. RESULTS: GIF was identified in 252 patients (9.7% of all patients). Only 20% of GIF patients were identifiable at admission. GIF was related to significantly higher mortality (43.7% vs. 5.3% in patients without GIF), as well as prolonged length of ICU stay (10 vs. 2 days) and mechanical ventilation (8 vs. 1 day), p < 0.001, respectively. Patients' profile (emergency surgical or medical), APACHE II and SOFA scores and the use of catecholamines at admission were identified as independent risk factors for the development of GIF. Development of GIF during ICU stay was an independent predictor for death. CONCLUSION: Gastrointestinal failure represents a relevant clinical problem accompanied by an increased mortality, longer ICU stay and mechanical ventilation

    Inhibition of Reactive Gliosis Attenuates Excitotoxicity-Mediated Death of Retinal Ganglion Cells

    Get PDF
    Reactive gliosis is a hallmark of many retinal neurodegenerative conditions, including glaucoma. Although a majority of studies to date have concentrated on reactive gliosis in the optic nerve head, very few studies have been initiated to investigate the role of reactive gliosis in the retina. We have previously shown that reactive glial cells synthesize elevated levels of proteases, and these proteases, in turn, promote the death of retinal ganglion cells (RGCs). In this investigation, we have used two glial toxins to inhibit reactive gliosis and have evaluated their effect on protease-mediated death of RGCs. Kainic acid was injected into the vitreous humor of C57BL/6 mice to induce reactive gliosis and death of RGCs. C57BL/6 mice were also treated with glial toxins, alpha-aminoadipic acid (AAA) or Neurostatin, along with KA. Reactive gliosis was assessed by immunostaining of retinal cross sections and retinal flat-mounts with glial fibrillary acidic protein (GFAP) and vimentin antibodies. Apoptotic cell death was assessed by TUNEL assays. Loss of RGCs was determined by immunostaining of flat-mounted retinas with Brn3a antibodies. Proteolytic activities of matrix metalloproteinase-9 (MMP-9), tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) were assessed by zymography assays. GFAP-immunoreactivity indicated that KA induced reactive gliosis in both retinal astrocytes and in Muller cells. AAA alone or in combination with KA decreased GFAP and vimentin-immunoreactivity in Mϋller cells, but not in astrocytes. In addition AAA failed to decrease KA-mediated protease levels and apoptotic death of RGCs. In contrast, Neurostatin either alone or in combination with KA, decreased reactive gliosis in both astrocytes and Mϋller cells. Furthermore, Neurostatin decreased protease levels and prevented apoptotic death of RGCs. Our findings, for the first time, indicate that inhibition of reactive gliosis decreases protease levels in the retina, prevents apoptotic death of retinal neurons, and provides substantial neuroprotection

    Expression of uPAR mRNA in peripheral blood is a favourite marker for metastasis in gastric cancer cases

    Get PDF
    Urokinase-type plasminogen activator receptor (uPAR) plays a central role in the plasminogen activation cascade and participates in extracellular matrix degradation, cell migration and invasion. We evaluated the expression level of uPAR mRNA and the presence of isolated tumour cells (ITCs) in bone marrow (BM) and peripheral blood (PB) in gastric cancer patients and clarified its clinical significance. We assessed specific uPAR mRNA expression by quantitative real-time reverse transcriptase- polymerase chain reaction (RT–PCR) in BM and PB in 846 gastric cancer patients as well as three epithelial cell markers, carcinoembryonic antigen (CEA), cytokeratin (CK)-19 and CK-7. The uPAR mRNA expression in bone marrow and peripheral blood expressed significantly higher than normal controls (P<0.0001). The uPAR mRNA in BM showed concordant expression with the depth of tumour invasion, distant metastasis, and the postoperative recurrence (P=0.015, 0.044 and 0.010, respectively); whereas in PB, we observed more intimate significant association between uPAR expression and clinicopathologic variables, such as depth of tumour invasion, the distant metastasis, the venous invasion and the clinical stage (P=0.009, 0.002, 0.039 and 0.008, respectively). In addition, the uPAR mRNA expression in PB was an independent prognostic factor for distant metastasis by multivariate analysis. We disclosed that it was possible to identify high-risk patients for distant metastasis by measuring uPAR mRNA especially in peripheral blood at the timing of operation in gastric cancer patients
    corecore