1,295 research outputs found

    Effect of seed sett size on sprouting, shoot growth, and tuber yield of white guinea yam (Dioscorea rotundata)

    Get PDF
    Open Access JournalApproximately 30% of harvested yams are used in subsequent plantings as seed tubers, which reduces the harvest size; however, planting tuber pieces (setts) potentially represents a viable alternative. To determine how sett size affects yam production, different sett sizes were compared for sprouting, shoot growth, and tuber yield. Larger setts exhibited faster sprouting with greater shoot biomass due to larger shoot growth rates during the early growth period. Tuber yield from 200 g setts was higher than that from 50 g setts; however, this yield advantage was not enough to compensate for the cost of larger sett size. Thus, planting 50 g setts might be the most cost-effective. Even the 50 g setts yielded higher than 1 kg tuber per plant which were available for selling in markets. Thus, planting with smaller setts can be promising method for efficiently improving yam production

    Non-destructive shoot biomass evaluation using a handheld NDVI sensor for field-grown staking Yam (Dioscorea rotundata Poir.)

    Get PDF
    Open Access Article; Published online: 20 Nov 2018Crop phenotyping is a key process used to accelerate breeding programs in the era of high-throughput genotyping. However, most rapid phenotyping methods developed to date have focused on major cereals or legumes, and their application to minor crops has been delayed. In this study, we developed a non-destructive method to predict shoot biomass by measuring spectral reflectance in staking yam (Dioscorea rotundata). The normalized difference vegetation index (NDVI) was evaluated using a handheld sensor that was vertically scanned from the top to the bottom of a plant alongside the stake. A linear regression model was constructed to predict shoot biomass through Bayesian analysis using NDVI as a parameter. The model well predicted the observed values of shoot biomass, irrespective of the growth stage and genotypes. Conversely, the model tended to underestimate the shoot biomass when the actual shoot biomass exceeded 150 g plant−1; this was compensated for when the parameter green area, calculated from plant image, was included in the model. This method reduced the time, cost, effort, and field space needed for shoot biomass evaluation compared with that needed for the sampling method, enabling shoot biomass phenotyping for a large population of plants. A total of 210 cross-populated plants were evaluated, and a correlation analysis was performed between the predicted shoot biomass and tuber yield. In addition to the prediction of tuber yield, this method could also be applied for the evaluation of crop models and stress tolerance, as well as for genetic analyses

    Effect of leaf thinning on shoot growth and tuber yield of white Guinea yam

    Get PDF
    Mutual leaf shading can inhibit the growth of yam, reducing tuber yield. To improve light utilization, approximately 25% of leaves in a plant were thinned during the period of maximum shoot growth. Shoot dry weight was estimated every two weeks using a non-destructive method. Leaf thinning caused higher shoot growth rates (SGRs) after thinning, while control plants had SGRs close to zero. The higher SGRs in the thinned plants was attributed to an increase in new leaf development. This indicates that the plateau in shoot growth commonly observed during the late growth period is reversible and could be improved artificially. In thinned plants, there was a positive relationship between shoot dry weight and SGR, although no such relationship was observed in control plants after the middle growth period. This positive correlation indicates a higher shoot growth per unit leaf area in the thinned plants than in the control plants, presumably due to improved light utilization and a higher photosynthetic rate of new leaves. However, leaf thinning reduced tuber yields, presumably because of a lower total carbon assimilation per plant and greater growth competition between shoots and tubers. High correlations between shoot dry weight and tuber yield indicated that a high shoot biomass is more important than improving light utilization for increased tuber yields

    Intra-plant variation in seed weight and seed protein content of cowpea

    Get PDF
    Open Access JournalSeed size and protein content are the major breeding objectives for cowpeas (Vigna unguiculata). However, intra-plant variation in these traits causes heterogeneous seed quality and seed depreciation. To determine the causes and severity of intra-plant variation in cowpea single seed weight and protein content, seeds from individual plants were analyzed in relation to their positional effects. Associations between positional variables and seed traits were revealed by additive Bayesian network analysis, and the graphical models were compared for different accessions. Intra-plant variation in single seed weight and protein content were large compared to the variations in genetic resources, and these variations are thought to be related to the source/sink ratio within a plant. In accessions with longer flowering periods, the later-flowering peduncles on the upper nodes produced comparatively larger seeds due to a greater availability of assimilated carbon from leaves that maintain their greenness. While, in accessions with shorter flowering periods, the earlier-flowering peduncles on the lower nodes produced relatively larger seeds because less carbon is available at the later filling periods due to rapid senescence. For all accessions, protein content was higher in seeds derived from later-flowering peduncles and in pods with lower seed numbers. The nitrogen source/sink ratio may be higher in the later filling period because of a smaller number of filling seeds and a higher availability of nitrogen remobilized from senescing leaves and stems

    Freezing of gait and white matter changes: a tract-based spatial statistics study.

    Get PDF
    BACKGROUND: We hypothesized that the integrity of white matter might be related to the severity of freezing of gait in age-related white matter changes. METHODS: Twenty subjects exhibiting excessive hyperintensities in the periventricular and deep white matter were recruited. The subjects underwent the Freezing of Gait Questionnaire, computerized gait analyses, and diffusion tensor magnetic resonance imaging. Images of axial, radial and mean diffusivity, and fractional anisotropy were calculated as indices of white matter integrity and analyzed with tract-based spatial statistics. RESULTS: The fractional anisotropy, mean, axial and radial diffusivity averaged across the whole white matter structure were all significantly correlated with Freezing of Gait Questionnaire scores. Regionally, a negative correlation between Freezing of Gait Questionnaire scores and fractional anisotropy was found in the left superior longitudinal fasciculus beneath the left premotor cortex, right corpus callosum, and left cerebral peduncle. The scores of the Freezing of Gait Questionnaire were positively correlated with mean diffusivity in the left corona radiata and right corpus callosum, and with both axial and radial diffusivity in the left corona radiata. The white matter integrity in these tracts (except the corpus callosum) showed no correlation with cognitive or other gait measures, supporting the specificity of those abnormalities to freezing of gait. CONCLUSION: Divergent pathological lesions involved neural circuits composed of the cerebral cortex, basal ganglia and brainstem, suggesting that freezing of gait has a multifactorial nature

    Variability of flowering sex and its effect on agronomic trait expression in white guinea yam

    Get PDF
    Open Access Journal; Published online: 25 Apr 2022White Guinea yam (Dioscorea rotundata) is mainly a dioecious tuberous crop that produces flowers of varying sex phenotypes. Agronomic traits in Guinea yam differ according to the sex phenotype, but the precise interaction between the traits and sex phenotype is not clearly understood. This might be due to the high heterozygosity of yam where cultivars with different flowering sex have different genetic backgrounds, which mask the sole effect of sex phenotype on the agronomic traits. This study used F1-derived clonal progenies from a bi-parental cross to minimize the impact of different genetic backgrounds among the plants with different sex phenotypes. The impact of plant sex on agronomic traits, specifically tuber yield, was evaluated through field trials conducted for four years. The results showed that only plants with a female genotype exhibited varying sex phenotypes even within the clones of same accession grown in the same experimental field. The significant effects of sex genotype and phenotype on agronomic traits were detected. Our results revealed that the flowering date was delayed in the plants with female genotypes compared to male genotypes, even when compared only among the plants with male phenotypes. The flowering date is the most important reason for the sexual differences in tuber yield. A high tuber yield was obtained when plants with the female phenotype flowered before tuber enlargement. This result can be attributed to the fact that the low flowering intensity in female plants increases the availability of carbon resources for leaf development. Female plants also showed a large negative effect of late flowering on tuber yield owing to resource competition between flowering and tuber enlargement. These findings demonstrate the feasibility of yield improvement by controlling the flowering time, with a higher effectiveness achieved in female than in male plants
    corecore