74 research outputs found

    Task swapping networks in distributed systems

    Full text link
    In this paper we propose task swapping networks for task reassignments by using task swappings in distributed systems. Some classes of task reassignments are achieved by using iterative local task swappings between software agents in distributed systems. We use group-theoretic methods to find a minimum-length sequence of adjacent task swappings needed from a source task assignment to a target task assignment in a task swapping network of several well-known topologies.Comment: This is a preprint of a paper whose final and definite form is published in: Int. J. Comput. Math. 90 (2013), 2221-2243 (DOI: 10.1080/00207160.2013.772985

    One-loop corrections to omega photoproduction near threshold

    Full text link
    One-loop corrections to ω\omega photoproduction near threshold have been investigated by using the approximation that all relevant transition amplitudes are calculated from the tree diagrams of effective Lagrangians. With the parameters constrained by the data of γNπN\gamma N \to \pi N, γNρN\gamma N \to \rho N, and πNωN\pi N \to \omega N reactions, it is found that the one-loop effects due to the intermediate πN\pi N and ρN\rho N states can significantly change the differential cross sections and spin observables. The results from this exploratory investigation suggest strongly that the coupled-channel effects should be taken into account in extracting reliable resonance parameters from the data of vector meson photoproduction in the resonance region.Comment: 19 pages, REVTeX, 14 figures, title changed, revised version to appear in Phys. Rev.

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Post-harvest browning syndrome and other quality defects of Backhousia myrtifolia

    No full text
    Backhousia myrtifolia is a species native to Australia that shows potential as a cut flower crop. During Spring and Summer, it bears numerous small florets with prominent white sepals and glossy deep-green foliage. B. myrtifolia is harvested either when tight white buds are present in the centre of the star-shaped sepals, or following bud burst, after the petals and stamens have abscised to leave only the sepals.Wilting and brown-to-black discolouration of the flowers and foliage can markedly reduce stem quality. Several forms of discolouration were characterised over the 2004 - 2006 flowering seasons and were collectively termed 'post-harvest browning syndrome'. Further research based on the symptomatology described herein is required to elucidate the causal agent(s)

    Exposure of Tomato Fruit to 1-MCP Improves Quality of Stored Slices

    No full text
    Maintenance of quality, such as firmness, is important during storage of fresh cut produce. This study compared the effects of I-MCP on the quality of tomato slices when intact tomatoes were treated with 1-MCP and then sliced, or tomatoes were sliced and the slices treated with I-MCP. In both instances the MCP treatment was 1 µL Lˉٰ at 20 ºC for 12 h. Tomato cv. 'Revolution' was harvested at the 'pink' stage of maturity, cut into 7-mm slices, and stored as vertical stacks in closed plastic containers at 5ºC for up to 7 days after the 1-MCP treatment. Exposure of intact tomatoes to I-MCP resulted in reduced ethylene production (31%) and firmer (22%) slices than when tomatoes were not I-MCP treated. The application of I-MCP prior to slicing of tomatoes appears a useful strategy to retain quality of stored tomato slices

    Effect of an Ethylene Absorbent on Quality of Tomato Slices

    No full text
    Ethylene production is stimulated during the slicing of fresh cut tomato slices. Experiments were conducted to investigate whether the inclusion of ethylene absorbents in packaging affects the quality of tomato slices cv. Revolution during storage at 5OC. ‘Pink’ maturity stage tomatoes were cut into 7mm thick slices and vertically stacked in closed glass containers for 12 days with or without Purafil® to remove ethylene. The ethylene removal treatment resulted in reduced ethylene, less CO2 accumulation, and firmer slices

    1-Methylcyclopropene Delays Softening in Tomato Slices

    No full text
    I-Methylcyclopropene (1-MCP) has the potential in tomato to reduce ethylene-associated changes in texture. Tomato cv. 'Revolution' was harvested at the 'pink' maturity stage and whole fruit treated with 0, 0.1, 1.0 or 10.0 µL.L-' 1-MCP at 20 "C for 12 h. Slices of 7-mm thickness were cut using a commercial slicer, and the slices stored in vertical stacks in plastic containers at 5°C for 7 days. The application of 1-MCP reduced both ethylene production and respiration rate of slices and resulted in firmer pericarp firmness. Ethylene production was 24%, 40%, and 62% lower following 0.1, 1.0, 10.0 µL L-' 1-MCP, respectively, compared with controls. In addition, respiration rate was reduced 6%, 10% and 20% by those 1-MCP treatments. 1-MCP treatments produced 20%, 34%, and 24% higher pericarp firmness, respectively, than in fruit not treated with 1-MCP

    1-Methylcyclopropene Delays Softening in Tomato Slices

    No full text
    I-Methylcyclopropene (1-MCP) has the potential in tomato to reduce ethylene-associated changes in texture. Tomato cv. 'Revolution' was harvested at the 'pink' maturity stage and whole fruit treated with 0, 0.1, 1.0 or 10.0 µL.L-' 1-MCP at 20 "C for 12 h. Slices of 7-mm thickness were cut using a commercial slicer, and the slices stored in vertical stacks in plastic containers at 5°C for 7 days. The application of 1-MCP reduced both ethylene production and respiration rate of slices and resulted in firmer pericarp firmness. Ethylene production was 24%, 40%, and 62% lower following 0.1, 1.0, 10.0 µL L-' 1-MCP, respectively, compared with controls. In addition, respiration rate was reduced 6%, 10% and 20% by those 1-MCP treatments. 1-MCP treatments produced 20%, 34%, and 24% higher pericarp firmness, respectively, than in fruit not treated with 1-MCP

    Impact of cold storage on glucosinolate levels in seed-sprouts of broccoli, rocket, white radish and kohl-rabi

    Get PDF
    The effect of cold storage on glucosinolate concentration was examined in 7-day-old seed-sprouts of broccoli, kohl rabi, white radish and rocket. Principal glucosinolates identified were glucoraphanin and glucoerucin (in broccoli, kohl rabi and rocket), glucoiberin (in broccoli and kohl rabi), and glucoraphenin and glucodehydroerucin (in white radish). Generally, sprouts showed no significant changes in individual glucosinolate concentrations during storage at 4°C for 3 weeks. The exception to this was rocket, which showed a significant decline in glucoerucin and glucoraphanin after 1 and 2 weeks, respectively. These preliminary results indicate that as there is no significant loss of glucosinolates in broccoli, radish and kohl rabi sprouts, these sprouts may be stored under domestic refrigeration conditions without significant loss of potential anti-cancer compounds. Rocket sprouts, on the other hand, should be consumed soon after purchase if glucosinolate levels are to be maintained

    Alk (en) ylresorcinol concentrations in'Kensington Pride'mango peel and antifungal activity against Colletotrichum gloeosporioides

    No full text
    Two preformed alk(en)ylresorcinols, 5-n-heptadecenylresorcinol and 5-n-pentadecylresorcinol, were identified in ‘Kensington Pride’ mango fruit peel. The alk(en)ylresorcinols had antifungal activity against C. gloeosporioides, as determined from thin layer chromatography bioassays. Soil-applied activators of plant defence (Acibenzolar at 150 mg L-1, and soluble potassium silicate at 200 and 1000 mg L-1) did not influence concentrations of 5-n-heptadecenylresorcinol or 5-n-pentadecyl¬resorcinol in mango peel when applied 2 months after fruit set and one month later. Concentrations of both alk(en)ylresorcinols were high 2 months after fruit set but levels declined by 50% within 1 month (2 months before commercial harvest) and did not change significantly from commercial harvest until eating-ripe
    corecore