15 research outputs found

    Ergot resistance in sorghum in relation to flowering, inoculation technique and disease development

    Get PDF
    Ergot is an important disease of sorghum (Sorghum bicolor) in parts of Africa and Asia. Studies were conducted to determine the relationship between flowering biology and ergot infection, and to develop an artificial field-screening technique to identify ergot resistance in sorghum. Spikelets resisted infection after anthesis, but each day's delay in anthesis after inoculation supported 8-3% more ergot. The screening technique consisted of three components: trimming of panicles to remove pollinated spikelets before inoculation, a single inoculation of trimmed panicles, and panicle bagging for 7-10 days. Inoculated panicles were evaluated by a qualitative visual rating method (on a 1-5 scale) and a quantitative spikelet counting method. Selected accessions from the world collection of sorghum germplasm were screened at Karama Research Station, Rwanda, for two seasons and 12 ergot-resistant lines were identified. These were also resistant at ICRISAT Centre, India

    Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum (Sorghum bicolor (L.) Moench).

    No full text
    The A1 cytoplasmic-nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F(1) hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene-environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994-1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned similar to 31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed
    corecore