42 research outputs found
Developmental changes and organelle biogenesis in the reproductive organs of thermogenic skunk cabbage (Symplocarpus renifolius)
Sex-dependent thermogenesis during reproductive organ development in the inflorescence is a characteristic feature of some of the protogynous arum species. One such plant, skunk cabbage (Symplocarpus renifolius), can produce massive heat during the female stage but not during the subsequent male stage in which the stamen completes development, the anthers dehisce, and pollen is released. Unlike other thermogenic species, skunk cabbage belongs to the bisexual flower group. Although recent studies have identified the spadix as the thermogenic organ, it remains unclear how individual tissues or intracellular structures are involved in thermogenesis. In this study, reproductive organ development and organelle biogenesis were examined during the transition from the female to the male stage. During the female stage, the stamens exhibit extensive structural changes including changes in organelle structure and density. They accumulate high levels of mitochondrial proteins, including possible thermogenic factors, alternative oxidase, and uncoupling protein. By contrast, the petals and pistils do not undergo extensive changes during the female stage. However, they contain a larger number of mitochondria than during the male stage in which they develop large cytoplasmic vacuoles. Comparison between female and male spadices suggests that mitochondrial number rather than their level of activity correlates with thermogenesis. Their spadices, even in the male, contain a larger amount of mitochondria that had greater oxygen consumption, compared with non-thermogenic plants. Taken together, our data suggest that the extensive maturation process in stamens produces massive heat through increased metabolic activities. The possible mechanisms by which petal and pistil metabolism may affect thermogenesis are also discussed
Advantage of Insulin Glulisine Over Regular Insulin in Patients With Type 2 Diabetes and Severe Renal Insufficiency
ObjectivesTo compare the efficacy and safety of insulin glulisine over regular insulin in patients with type 2 diabetes and severe renal insufficiency.SubjectsOur study included 18 patients with type 2 diabetes and a mean (range) estimated glomerular filtration rate of 13.2 mL/minute/1.73 m2 (5.8-27.6), which corresponds to stage 4-5 chronic kidney disease.DesignAfter titration of doses, regular insulin was administered thrice daily on Day 1, along with continuous glucose monitoring for 24 h starting at 7 am. Exactly equal doses of insulin glulisine were administered on Day 2. Area under the curve (AUC) for blood glucose level variation after breakfast (AUC-B 0-4), lunch (AUC-L 0-6), and dinner (AUC-D 0-6) were evaluated.ResultsAUC-B 0-4 and AUC-D 0-6 were significantly lower with insulin glulisine than with regular insulin (AUC-B 0-4: 3.3 ± 4.7 vs. 6.2 ± 5.4 × 102 mmol/L·minute, respectively, P = .028; AUC-D 0-6: 1.8 ± 7.3 vs. 6.5 ± 6.2 × 102 mmol/L·minute, respectively, P = .023). In contrast, AUC-L 0-6 was higher with insulin glulisine than with regular insulin (AUC-L 0-6: 7.6 ± 6.4 vs. 4.2 ± 8.7 × 102 mmol/L·minute, respectively, P = .099), suggesting a prolonged hypoglycemic action of regular insulin after lunch.ConclusionsInsulin glulisine effectively suppressed postprandial hyperglycemia, whereas regular insulin caused a prolonged hypoglycemic action. These findings support the effectiveness and safety of insulin glulisine in patients with type 2 diabetes and severe renal insufficiency
Identification of a tomato UDP-arabinosyltransferase for airborne volatile reception
植物間コミュニケーションの仕組みを解明 --受容した香りを防御物質に変える遺伝子発見--. 京都大学プレスリリース. 2023-02-28.Volatiles from herbivore-infested plants function as a chemical warning of future herbivory for neighboring plants. (Z)-3-Hexenol emitted from tomato plants infested by common cutworms is taken up by uninfested plants and converted to (Z)-3-hexenyl β-vicianoside (HexVic). Here we show that a wild tomato species (Solanum pennellii) shows limited HexVic accumulation compared to a domesticated tomato species (Solanum lycopersicum) after (Z)-3-hexenol exposure. Common cutworms grow better on an introgression line containing an S. pennellii chromosome 11 segment that impairs HexVic accumulation, suggesting that (Z)-3-hexenol diglycosylation is involved in the defense of tomato against herbivory. We finally reveal that HexVic accumulation is genetically associated with a uridine diphosphate-glycosyltransferase (UGT) gene cluster that harbors UGT91R1 on chromosome 11. Biochemical and transgenic analyses of UGT91R1 show that it preferentially catalyzes (Z)-3-hexenyl β-D-glucopyranoside arabinosylation to produce HexVic in planta
〔研究ノート〕慢性腎臓病発症初期ラットの腎障害抑制および骨密度維持に対する大豆イソフラボン抽出物あるいはアルギニンの有効性評価に関する基礎研究
The objective of the present study was to elucidate the efficacy of soybean isoflavones extracted from hypocotyl and L-Arginine on the renal function, bone mineral density, and bone strength of adult model rats in the relatively early stage of chronic kidney disease(CKD). Based on our previous study, 360 mg/kg body weight of adenine suspended in a 2% methyl cellulose solution was administered intragastrically for six days to generate CKD model rats. For the intact/control condition, a 2% methyl cellulose solution was administered to the rats for six days. After the administration of adenine, 32 rats were randomly divided into four groups, and each group was fed a diet containing 20% casein protein(20CA, as a control, Group CA), 20CA+0.20% soy isoflavone extract(Group IF), 20CA+1.0% L-Arginine(Group Arg), and 20CA+0.20% soy isoflavone extract and 1.0% L-Arginine(IFA)at 15 g/day for 25 days, respectively. Intact rats were also fed the control diet as in group CA. Group CA had apparent renal failure, indicated by swelling of the kidneys, a decrease in creatinine clearance(CCr), increased BUN and proteinuria and lower hematocrit, as well as bone loss estimated by a lower bone weight, femoral-BMD and bone strength than the intact control group. These results showed that adenine administration results in the development of CKD and bone loss under the conditions used in the present study. The results were as follows: Compared with group CA, 1)group IF showed a significantly higher cancellous BMD in the femur, but no significant differences were observed in the cortical BMD, bone strength, kidney weight, CCr, urinary protein excretion or urinary NAG activity. 2)group Arg showed no significant differences in any parameters related to the renal function, BMD or bone strength. 3)group IFA showed significantly lower values for proteinuria, higher values for the urinary NAG activity and higher values for the femoral cancellous BMD. However, there were no significant differences observed in the kidney weight, CCr, bone weight or cortical BMD. Based on these results, we concluded that the dietary soy isoflavone extract and L-Arginine maintained the bone BMD, albeit to a limited extent, and suppressed the renal failure of the rats in the early stage of CKD under the conditions used in the present study
Snack and Nutrient Intake Status of Top-Level Female University Athletes: A Cross-Sectional Study
Ensuring proper energy, nutrient intake, and sleep is vital for athlete health and competitiveness. Despite previous studies investigating the nutrient intake among top-level collegiate female athletes in Japan, the status of snack consumption remains unclear. This study addressed this gap by surveying 70 top-level female university athletes. The survey included a self-administered diet history questionnaire, a qualitative food intake frequency survey, and a survey on snack and dietary supplement use. The results revealed a low frequency of snack intake (2.1 ± 2.3 days/week), with 55.7% of athletes reporting snack consumption. The energy intake in the snack-intake group was significantly higher than that in the without-snack-intake group (31.5 ± 10.0 vs. 26.6 ± 9.92 kcal/kg of BM, p = 0.047). Similarly, carbohydrate intake was significantly higher in the snack-intake group than in the without-snack-intake group (4.84 ± 1.71 vs. 3.96 ± 1.65 g/kg of BM/day, p = 0.035). However, neither group reached the recommended value of 5–8 g/kg of BM/day during the medium training period. Overall, this study emphasizes inadequate energy intake even among athletes with a high snack intake frequency, highlighting the necessity to enhance overall food consumption and underscoring the importance of nutritional education for incorporating appropriate complementary meals to improve performance
Dual Transcriptional Control of amfTSBA, Which Regulates the Onset of Cellular Differentiation in Streptomyces griseus
The amf gene cluster encodes a probable secretion system for a peptidic morphogen, AmfS, which induces aerial mycelium formation in Streptomyces griseus. Here we examined the transcriptional control mechanism for the promoter preceding amfT (PamfT) directing the transcription of the amfTSBA operon. High-resolution S1 analysis mapped a transcriptional start point at 31 nucleotides upstream of the translational start codon of amfT. Low-resolution analysis showed that PamfT is developmentally regulated in the wild type and completely abolished in an amfR mutant. The −35 region of PamfT contained the consensus sequence for the binding of BldD, a pleiotropic negative regulator for morphological and physiological development in Streptomyces coelicolor A3(2). The cloned bldD locus of S. griseus showed high sequence similarity to the S. coelicolor counterpart. Transcription of bldD occurred constitutively in both the wild type and an A-factor-deficient mutant of S. griseus, which suggests that the regulatory role of BldD is independent of A-factor. The gel retardation assay revealed that purified BldD and AmfR recombinant proteins specifically bind PamfT. Overproduction of BldD in the wild-type cell conferred a bald phenotype (defective in aerial growth and streptomycin production) and caused marked repression of PamfT activity. An amfT-depleted mutant also showed a bald phenotype but PamfT activity was not affected. Both the bldD-overproducing wild-type strain and the amfT mutant were unable to induce aerial growth of an amfS mutant in a cross-feeding assay, which indicates that these strains are defective in the production of an active AmfS peptide. The results overall suggests that two independent regulators, AmfR and BldD, control PamfT activity via direct binding to determine the transcriptional level of the amf operon responsible for the production and secretion of AmfS peptide, which induces the erection of aerial hyphae in S. griseus