625 research outputs found

    Evidence of heavy-element ashes in thermonuclear X-ray bursts with photospheric superexpansion

    Full text link
    A small subset of thermonuclear X-ray bursts on neutron stars exhibit such a strong photospheric expansion that for a few seconds the photosphere is located at a radius r_ph >~ 1000 km. Such `superexpansions' imply a large and rapid energy release, a feature characteristic of pure He burst models. Previous calculations have shown that during a pure He burst, the freshly synthesized heavy-element ashes of burning can be ejected in a strong radiative wind and produce significant spectral absorption features. We search the burst data catalogs and literature and find 32 superexpansion bursts. We find that these bursts exhibit the following interesting features: (1) At least 31 are from (candidate) ultracompact X-ray binaries in which the neutron star accretes hydrogen-deficient fuel, suggesting that these bursts indeed ignite in a helium-rich layer. (2) In 2 bursts we detect strong absorption edges during the expansion phase. The edge energies and depths are consistent with the H-like or He-like edge of iron-peak elements with abundances greater than 100 times solar, suggesting that we are seeing the exposed ashes of nuclear burning. (3) The superexpansion phase is always followed by a moderate expansion phase during which r_ph ~ 30 km and the luminosity is near the Eddington limit. (4) The decay time of the bursts, t_d, ranges from short (approximately 10 s) to intermediate (>~ 1000 s). However, despite the large range of t_d, the duration of the superexpansion is always a few seconds, independent of t_d. By contrast, the duration of the moderate expansion is always of order t_d. (5) The photospheric radii r_ph during the moderate expansion phase are much smaller than steady state wind models predict. We show that this may be further indication that the wind contains highly non-solar abundances of heavy elements.Comment: Accepted for publication in Astronomy & Astrophysic

    Radius-expansion burst spectra from 4U 1728-34: an ultracompact binary?

    Full text link
    Recent theoretical and observational studies have shown that ashes from thermonuclear burning may be ejected during radius-expansion bursts, giving rise to photoionisation edges in the X-ray spectra. We report a search for such features in Chandra spectra observed from the low-mass X-ray binary 4U 1728-34. We analysed the spectra from four radius-expansion bursts detected in 2006 July, and two in 2002 March, but found no evidence for discrete features. We estimate upper limits for the equivalent widths of edges of a few hundred eV, which for the moderate temperatures observed during the bursts, are comparable with the predictions. During the 2006 July observation 4U 1728-34 exhibited weak, unusually frequent bursts (separated by <2 hr in some cases), with profiles and alpha-values characteristic of hydrogen-poor fuel. Recurrence times as short as those measured are insufficient to exhaust the accreted hydrogen at solar composition, suggesting that the source accretes hydrogen deficient fuel, for example from an evolved donor. The detection for the first time of a 10.77 min periodic signal in the persistent intensity, perhaps arising from orbital modulation, supports this explanation, and suggests that this system is an ultracompact binary similar to 4U 1820-30.Comment: 9 pages, 6 figures, accepted by Ap

    Nonrenormalization of Flux Superpotentials in String Theory

    Full text link
    Recent progress in understanding modulus stabilization in string theory relies on the existence of a non-renormalization theorem for the 4D compactifications of Type IIB supergravity which preserve N=1 supersymmetry. We provide a simple proof of this non-renormalization theorem for a broad class of Type IIB vacua using the known symmetries of these compactifications, thereby putting them on a similar footing as the better-known non-renormalization theorems of heterotic vacua without fluxes. The explicit dependence of the tree-level flux superpotential on the dilaton field makes the proof more subtle than in the absence of fluxes.Comment: 16 pages, no figures. Final version, to appear in JHEP. Arguments for validity of R-symmetry made more explicit. Minor extra comments and references adde

    A Minimal Length from the Cutoff Modes in Asymptotically Safe Quantum Gravity

    Full text link
    Within asymptotically safe Quantum Einstein Gravity (QEG), the quantum 4-sphere is discussed as a specific example of a fractal spacetime manifold. The relation between the infrared cutoff built into the effective average action and the corresponding coarse graining scale is investigated. Analyzing the properties of the pertinent cutoff modes, the possibility that QEG generates a minimal length scale dynamically is explored. While there exists no minimal proper length, the QEG sphere appears to be "fuzzy" in the sense that there is a minimal angular separation below which two points cannot be resolved by the cutoff modes.Comment: 26 pages, 1 figur

    Study of the neutron star structure in strong magnetic fields including the anomalous magnetic moments

    Full text link
    We study the effects of strong magnetic fields on the neutron star structure. If the interior field of a star is on the same order of the surface field currently observed, the influences of the magnetic field on the star mass and radius are negligible. If one assumes that the internal magnetic field can be as large as that estimated from the scalar virial theorem, considerable effects can be induced. The maximum mass of stars is arisen substantially while the central density is largely suppressed. For two equal-mass stars the radius of the magnetic star can be larger by about 10% \sim 20% than the nonmagnetic star.Comment: 26 pages, 5 postscript figures; replaced by the revised version, Chin. J. Astron. Astrophys., accepte

    Vortices, Instantons and Branes

    Full text link
    The purpose of this paper is to describe a relationship between the moduli space of vortices and the moduli space of instantons. We study charge k vortices in U(N) Yang-Mills-Higgs theories and show that the moduli space is isomorphic to a special Lagrangian submanifold of the moduli space of k instantons in non-commutative U(N) Yang-Mills theories. This submanifold is the fixed point set of a U(1) action on the instanton moduli space which rotates the instantons in a plane. To derive this relationship, we present a D-brane construction in which the dynamics of vortices is described by the Higgs branch of a U(k) gauge theory with 4 supercharges which is a truncation of the familiar ADHM gauge theory. We further describe a moduli space construction for semi-local vortices, lumps in the CP(N) and Grassmannian sigma-models, and vortices on the non-commutative plane. We argue that this relationship between vortices and instantons underlies many of the quantitative similarities shared by quantum field theories in two and four dimensions.Comment: 32 Pages, 4 Figure

    Fractal Spacetime Structure in Asymptotically Safe Gravity

    Full text link
    Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.Comment: 20 pages, late

    Relativistic outflow from two thermonuclear shell flashes on neutron stars

    Get PDF
    We study the exceptionally short (32-41 ms) precursors of two intermediate-duration thermonuclear X-ray bursts observed with RXTE from the neutron stars in 4U 0614+09 and 2S 0918-549. They exhibit photon fluxes that surpass those at the Eddington limit later in the burst by factors of 2.6 to 3.1. We are able to explain both the short duration and the super-Eddington flux by mildly relativistic outflow velocities of 0.1cc to 0.3cc subsequent to the thermonuclear shell flashes on the neutron stars. These are the highest velocities ever measured from any thermonuclear flash. The precursor rise times are also exceptionally short: about 1 ms. This is inconsistent with predictions for nuclear flames spreading laterally as deflagrations and suggests detonations instead. This is the first time that a detonation is suggested for such a shallow ignition column depth (yigny_{\rm ign} = 1010^{10} g cm2^{-2}). The detonation would possibly require a faster nuclear reaction chain, such as bypassing the alpha-capture on 12^{12}C with the much faster 12^{12}C(p,γ\gamma)13^{13}N(α\alpha,p)16^{16}O process previously proposed. We confirm the possibility of a detonation, albeit only in the radial direction, through the simulation of the nuclear burning with a large nuclear network and at the appropriate ignition depth, although it remains to be seen whether the Zel'dovich criterion is met. A detonation would also provide the fast flame spreading over the surface of the neutron star to allow for the short rise times. (...) As an alternative to the detonation scenario, we speculate on the possibility that the whole neutron star surface burns almost instantly in the auto-ignition regime. This is motivated by the presence of 150 ms precursors with 30 ms rise times in some superexpansion bursts from 4U 1820-30 at low ignition column depths of ~108^8 g cm2^{-2}.Comment: 11 pages, 6 figures, accepted by Astronomy and Astrophysic

    The Intermediate Scale Branch of the Landscape

    Full text link
    Three branches of the string theory landscape have plausibly been identified. One of these branches is expected to exhibit a roughly logarithmic distribution of supersymmetry breaking scales. The original KKLT models are in this class. We argue that certain features of the KKLT model are generic to this branch, and that the resulting phenomenology depends on a small set of discrete choices. As in the MSSM, the weak scale in these theories is tuned; a possible explanation is selection for the dark matter density.Comment: 16 pages. More thorough analysis; additonal reference

    Is There A String Theory Landscape

    Full text link
    We examine recent claims of a large set of flux compactification solutions of string theory. We conclude that the arguments for AdS solutions are plausible. The analysis of meta-stable dS solutions inevitably leads to situations where long distance effective field theory breaks down. We then examine whether these solutions are likely to lead to a description of the real world. We conclude that one must invoke a strong version of the anthropic principle. We explain why it is likely that this leads to a prediction of low energy supersymmetry breaking, but that many features of anthropically selected flux compactifications are likely to disagree with experiment.Comment: 39 pages, Latex, ``Terminology surrounding the anthropic principle revised to conform with accepted usage. More history of the anthropic principle included. Various references added.
    corecore