63 research outputs found

    Evaluation of a compression ignition engine performance and emission characteristics using diesel-essential oil blends of high orange oil content

    Full text link
    In this research, waste stream essential oil such as orange oil is used as a diesel fuel partial replacement to be tested in a diesel engine. Like diesel fuel, orange oil does not contain any oxygen since it is constituted of limonene (a colourless liquid aliphatic hydrocarbon) and has almost similar density. A 6-cylinder diesel engine is operated using various blends of orange and diesel fuel. The engine was operated with three different fuel blends: neat diesel, 74% diesel + 26% orange oil (D74O26) and 59% diesel + 41% orange oil (D59O41). All the orange oil blends produced nearly the same brake power from the engine experiment compared to neat diesel fuel. Furthermore, all orange oil blends emit less particulate matter, and the ‘count mean diameter’ of the emitted particles is also lower than base diesel. Based on the obtained results, these blends can be suggested to be used in a diesel engine

    Energy for sustainable future

    Full text link
    Energy and the environment are interrelated, and they are critical factors that influence the development of societies [...]</jats:p

    Microwave assisted biodiesel production using heterogeneous catalysts

    Full text link
    As a promising renewable fuel, biodiesel has gained worldwide attention to replace fossil-derived mineral diesel due to the threats concerning the depletion of fossil reserves and ecological constraints. Biodiesel production via transesterification involves using homogeneous, heterogeneous and enzymatic catalysts to speed up the reaction. The usage of heterogeneous catalysts over homogeneous catalysts are considered more advantageous and cost-effective. Therefore, several heterogeneous catalysts have been developed from variable sources to make the overall production process economical. After achieving optimum performance of these catalysts and chemical processes, the research has been directed in other perspectives, such as the application of non-conventional methods such as microwave, ultrasonic, plasma heating etc, aiming to enhance the efficiency of the overall process. This mini review is targeted to focus on the research carried out up to this date on microwave-supported heterogeneously catalysed biodiesel production. It discusses the phenomenon of microwave heating, synthesis techniques for heterogeneous catalysts, microwave mediated transesterification reaction using solid catalysts, special thermal effects of microwaves and parametric optimisation under microwave heating. The review shows that using microwave technology on the heterogeneously catalysed transesterification process greatly decreases reaction times (5–60 min) while maintaining or improving catalytic activity (>90%) when compared to traditional heating

    Current Progress of Jatropha Curcas Commoditisation as Biodiesel Feedstock: A Comprehensive Review

    Full text link
    This article looks at the national and global actors, social networks, and narratives that have influenced Jatropha’s worldwide acceptability as a biofuel crop. Jatropha Curcas is a genus of around 175 succulent shrubs and trees in the Euphorbiaceae family (some of which are deciduous, such as Jatropha Curcas L.). It’s a drought-tolerant perennial that thrives in poor or marginal soil and produces a large amount of oil per hectare. It is easy to grow, has a fast growth rate, and can generate seeds for up to 50 years. Jatropha Curcas has been developed as a unique and promising tropical plant for augmenting renewable energy sources due to its various benefits. It is deserving of being recognised as the only competitor in terms of concrete and intangible environmental advantages. Jatropha Curcas is a low-cost biodiesel feedstock with good fuel properties and more oil than other species. It is a non-edible oilseed feedstock. Thus it will have no impact on food prices or the food vs fuel debate. Jatropha Curcas emits fewer pollutants than diesel and may be used in diesel engines with equivalent performance. Jatropha Curcas also makes a substantial contribution to the betterment of rural life. The plant may also provide up to 40% oil yield per seed based on weight. This study looks at the features characteristics of Jatropha Curcas as biodiesel feedstock and performance, and emissions of internal combustion engine that operates on this biodiesel fuel

    Experimental Study of the Corrosiveness of Ternary Blends of Biodiesel Fuel

    Full text link
    Biodiesel is an alternative renewable resource to petroleum-based diesel. The aim of using biodiesel is to reduce environmental pollution and combat global warming. Biodiesel application in compression ignition engines has shown its compatibility with better combustion characteristics and high engine performance. Many advantages can be obtained by using biodiesel, including reducing exhaust gases, reducing air toxicity, providing energy security, and being biodegradable. However, biodiesel’s disadvantage involves oxidation stability, corrosion, degradation, and compatibility with other metallic materials. The present study investigates the corrosive behavior of the ternary blend (waste cooking-Calophyllum inophyllum biodiesel-diesel) fuel that occurs in contact with mild steel and stainless steel 316. The observation study for mild steel and stainless steel 316 material under the static immersion method was performed for 7,200 h and 14,400 h, respectively, at room temperature (25°C–30°C). In every 720 and 1,440 h of immersion time, the coupon’s profile was analyzed by scanning electron microscopy (SEM)/electron-dispersive spectrometer (EDS), and the mass loss was observed, for corrosivity investigation. Based on the obtained results, the average corrosion rate of mild steel and stainless steel 316 is 0.6257 and 0.0472 nm/year at 7,200 h, respectively; the difference in corrosion rate for these metallic materials is approximately 92.46%. The degradation of the fuel properties such as kinematic viscosity, density, refractive index, and acid value was monitored. In this study, stainless steel 316 was more resistant to corrosion attack with some micro pitting and showed better compatibility with the ternary blend than mild steel. The regression analysis and the correlation of corrosion rate were studied.</jats:p

    State-of-the-art and future perspectives of environmentally friendly machining using biodegradable cutting fluids

    Full text link
    The use of cutting fluids has played a vital role in machining operations in lubrication and cooling. Most cutting fluids are mineral oil-based products that are hazardous to the environment and the worker, cause severe diseases and pollute the environment. In addition, petroleum re-sources are becoming increasingly unsustainable. Due to environmental and health issues, legislations have been established to ensure that the consumption of mineral oil is reduced. Consequently, researchers are making efforts to replace these mineral oil-based products. Vegetable oils are grasping attention due to their better lubricating properties, ease of availability, biodegradability, low prices, and non-toxicity. In this study, a detailed review and critical analysis are conducted of the research works involving vegetable oils as cutting fluids keeping in view the shortcomings and possible solutions to overcome these drawbacks. The purpose of the review is to emphasise the benefits of vegetable oil-based cutting fluids exhibiting comparable performance to that of mineral oil-based products. In addition, an appropriate selection of non-edible vegetable oil-based cutting fluids along with optimum cutting parameters to avoid a scanty supply of edible oils is also dis-cussed. According to this research, vegetable oils are capable of substituting synthetic cutting fluids, and this option might aid in the successful and cost-efficient implementation of green machining

    Developments in Nanoparticles Enhanced Biofuels and Solar Energy in Malaysian Perspective: A Review of State of the Art

    Full text link
    The rapid rise in global oil prices, the scarcity of petroleum sources, and environmental concerns have all created severe issues. As a result of the country's rapid expansion and financial affluence, Malaysia's energy consumption has skyrocketed. Biodiesel and solar power are currently two of the most popular alternatives to fossil fuels in Malaysia. These two types of renewable energy sources appear to be viable options because of their abundant availability together with environmental and performance competence to highly polluting and fast depleting fossil fuels. The purpose of adopting renewable technology is to expand the nation's accessibility to a reliable and secure power supply. The current review article investigates nonconventional energy sources added with nanosized metal particles called as nanomaterials including biodiesel and solar, as well as readily available renewable energy options. Concerning the nation's energy policy agenda, the sources of energy demand are also investigated. The article evaluates Malaysia's existing position in renewable energy industries, such as biodiesel and solar, as well as the impact of nanomaterials. This review article discusses biodiesel production, applications, and government policies in Malaysia, as well as biodiesel consumption and recent developments in the bioenergy sector, such as biodiesel property modifications utilizing nanoparticle additions. In addition, the current review study examines the scope of solar energy, different photovoltaic concentrators, types of solar energy harvesting systems, photovoltaic electricity potential in Malaysia, and the experimental setup of solar flat plate collectors (FPC) with nanotechnology

    Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology

    Get PDF
    © 2020 by the authors. This research work focuses on investigating the lubricity and analyzing the engine characteristics of diesel-biodiesel blends with fuel additives (titanium dioxide (TiO2) and dimethyl carbonate (DMC)) and their effect on the tribological properties of a mineral lubricant. A blend of palm-sesame oil was used to produce biodiesel using ultrasound-assisted transesterification. B30 (30% biodiesel + 70% diesel) fuel was selected as the base fuel. The additives used in the current study to prepare ternary fuel blends were TiO2 and DMC. B30 + TiO2 showed a significant reduction of 6.72% in the coefficient of friction (COF) compared to B30. B10 (Malaysian commercial diesel) exhibited very poor lubricity and COF among all tested fuels. Both ternary fuel blends showed a promising reduction in wear rate. All contaminated lubricant samples showed an increment in COF due to the dilution of combustible fuels. Lub + B10 (lubricant + B10) showed the highest increment of 42.29% in COF among all contaminated lubricant samples. B30 + TiO2 showed the maximum reduction (6.76%) in brake-specific fuel consumption (BSFC). B30 + DMC showed the maximum increment (8.01%) in brake thermal efficiency (BTE). B30 + DMC exhibited a considerable decline of 32.09% and 25.4% in CO and HC emissions, respectively. The B30 + TiO2 fuel blend showed better lubricity and a significant improvement in engine characteristics

    Investigation of flexural properties of epoxy composite by utilizing graphene nanofillers and natural hemp fibre reinforcement

    Full text link
    This study aims to determine the optimum reinforcement required to attain the best combination of flexural strength of modified green composites (graphene oxide + hemp fibre reinforced epoxy composites) for potential use in structural applications. An attempt was also made for the combination of graphene and hemp fibres to enhance load-bearing ability. The infusion of hemp and graphene was made by the weight of the base matrix (epoxy composite). Results showed that graphene reinforcement at 0.4 wt.% of matrix showed load-sustaining capacity of 0.76 kN or 760 MPa. In the case of hemp fibre reinforcement at 0.2 wt.% of the matrix, infusion showed enhanced load-bearing ability (0.79 kN or 790 MPa). However, the combination of graphene (0.1 wt.% graphene nanofillers) and hemp (5 wt.% hemp fibre) indicated a load-sustaining ability of 0.425 kN or 425 MPa, whereas maximum deflection was observed for specimen with hemp 7.5 % + graphene 0.2 % with 1.9 mm. Graphene addition to the modified composites in combination with natural fibres showed promising results in enhancing the mechanical properties under study. Moreover, graphene-modified composites exhibited higher thermal resistance compared to natural fibre reinforced composites. However, when nanofiller reinforcement exceeded a threshold value, the composites exhibited reduced flexural strength as a result of nanofiller agglomeration
    • …
    corecore