2,426 research outputs found

    A Study on the Generality of Neural Network Structures for Monocular Depth Estimation

    Full text link
    Monocular depth estimation has been widely studied, and significant improvements in performance have been recently reported. However, most previous works are evaluated on a few benchmark datasets, such as KITTI datasets, and none of the works provide an in-depth analysis of the generalization performance of monocular depth estimation. In this paper, we deeply investigate the various backbone networks (e.g.CNN and Transformer models) toward the generalization of monocular depth estimation. First, we evaluate state-of-the-art models on both in-distribution and out-of-distribution datasets, which have never been seen during network training. Then, we investigate the internal properties of the representations from the intermediate layers of CNN-/Transformer-based models using synthetic texture-shifted datasets. Through extensive experiments, we observe that the Transformers exhibit a strong shape-bias rather than CNNs, which have a strong texture-bias. We also discover that texture-biased models exhibit worse generalization performance for monocular depth estimation than shape-biased models. We demonstrate that similar aspects are observed in real-world driving datasets captured under diverse environments. Lastly, we conduct a dense ablation study with various backbone networks which are utilized in modern strategies. The experiments demonstrate that the intrinsic locality of the CNNs and the self-attention of the Transformers induce texture-bias and shape-bias, respectively.Comment: Accepted in TPAM

    Tracing Recent Star Formation of Red Early-type Galaxies out to zz \sim 1

    Full text link
    We study the mid-infrared (IR) excess emission of early-type galaxies (ETGs) on the red-sequence at z<z < 1 using a spectroscopic sample of galaxies in the fields of Great Observatories Origins Deep Survey (GOODS). In the mass-limited sample of 1025 galaxies with MstarM_{star} >> 1010.5^{10.5} MM_{\odot} and 0.4<z<1.050.4<z<1.05, we identify 696 SpitzerSpitzer 24 μ\mum detected (above the 5σ\sigma) galaxies and find them to have a wide range of NUV-rr and rr-[12 μ\mum] colors despite their red optical uru-r colors. Even in the sample of very massive ETGs on the red sequence with MstarM_{star} >> 1011.2^{11.2} MM_{\odot}, more than 18% show excess emission over the photospheric emission in the mid-IR. The combination with the results of red ETGs in the local universe suggests that the recent star formation is not rare among quiescent, red ETGs at least out to z1z \sim 1 if the mid-IR excess emission results from intermediate-age stars or/and from low-level ongoing star formation. Our color-color diagram including near-UV and mid-IR emissions are efficient not only for identifying ETGs with recent star formation, but also for distinguishing quiescent galaxies from dusty star-forming galaxies.Comment: 25 pages, 9 figures, accepted for publication in Ap

    Optical Images and Source Catalog of AKARI North Ecliptic Pole Wide Survey Field

    Full text link
    We present the source catalog and the properties of the B,RB-, R-, and II-band images obtained to support the {\it AKARI} North Ecliptic Pole Wide (NEP-Wide) survey. The NEP-Wide is an {\it AKARI} infrared imaging survey of the north ecliptic pole covering a 5.8 deg2^2 area over 2.5 -- 6 \micron wavelengths. The optical imaging data were obtained at the Maidanak Observatory in Uzbekistan using the Seoul National University 4k ×\times 4k Camera on the 1.5m telescope. These images cover 4.9 deg2^2 where no deep optical imaging data are available. Our B,RB-, R-, and II-band data reach the depths of \sim23.4, \sim23.1, and \sim22.3 mag (AB) at 5σ\sigma, respectively. The source catalog contains 96,460 objects in the RR-band, and the astrometric accuracy is about 0.15\arcsec at 1σ\sigma in each RA and Dec direction. These photometric data will be useful for many studies including identification of optical counterparts of the infrared sources detected by {\it AKARI}, analysis of their spectral energy distributions from optical through infrared, and the selection of interesting objects to understand the obscured galaxy evolution.Comment: 39 pages, 12 figure

    Inflammation-induced Id2 promotes plasticity in regulatory T cells

    Get PDF
    T(H)17 cells originating from regulatory T (T-reg) cells upon loss of the T-reg-specific transcription factor Foxp3 accumulate in sites of inflammation and aggravate autoimmune diseases. Whether an active mechanism drives the generation of these pathogenic &apos;ex-Foxp3 T(H)17&apos; cells, remains unclear. Here we show that pro-inflammatory cytokines enhance the expression of transcription regulator Id2, which mediates cellular plasticity of T-reg into &apos;ex-Foxp3&apos; T(H)17 cells. Expression of Id2 in in vitro differentiated iT(reg) cells reduces the expression of Foxp3 by sequestration of the transcription activator E2A, leading to the induction of T(H)17-related cytokines. T-reg-specific ectopic expression of Id2 in mice significantly reduces the T-reg compartment and causes immune dysregulation. Cellular fate-mapping experiments reveal enhanced T-reg plasticity compared to wild-type, resulting in exacerbated experimental autoimmune encephalomyelitis pathogenesis or enhanced anti-tumor immunity. Our findings suggest that controlling Id2 expression may provide a novel approach for effective T-reg cell immunotherapies for both autoimmunity and cancer.11sciescopu

    The mid-infrared view of red sequence galaxies in Abell 2218 with <i>AKARI</i>

    Get PDF
    We present the AKARI Infrared Camera (IRC) imaging observation of early-type galaxies (ETGs) in A2218 at z ~ 0.175. Mid-infrared (MIR) emission from ETGs traces circumstellar dust emission from asymptotic giant branch (AGB) stars or/and residual star formation. Including the unique imaging capability at 11 and 15 μm, our AKARI data provide an effective way to investigate MIR properties of ETGs in the cluster environment. Among our flux-limited sample of 22 red sequence ETGs with precise dynamical and line strength measurements (less than 18 mag at 3 μm), we find that at least 41% have MIR-excess emission. The N3 – S11 versus N3 (3 and 11 μm) color-magnitude relation shows the expected blue sequence, but the MIR-excess galaxies add a red wing to the relation especially at the fainter end. A spectral energy distribution analysis reveals that the dust emission from AGB stars is the most likely cause of the MIR excess, with a low level of star formation being the next possible explanation. The MIR-excess galaxies show a wide spread of N3 – S11 colors, implying a significant spread (2-11 Gyr) in the estimated mean ages of stellar populations. We study the environmental dependence of MIR-excess ETGs over an area out to a half virial radius (~1 Mpc). We find that the MIR-excess ETGs are preferentially located in the outer region. From this evidence, we suggest that the fainter, MIR-excess ETGs have just joined the red sequence, possibly due to the infall and subsequent morphological/spectral transformation induced by the cluster environment
    corecore