6 research outputs found

    Environmental Factors Affecting Survival of Immature Ixodes scapularis and Implications for Geographical Distribution of Lyme Disease: The Climate/Behavior Hypothesis

    Get PDF
    Recent reports suggest that host-seeking nymphs in southern populations of Ixodes scapularis remain below the leaf litter surface, while northern nymphs seek hosts on leaves and twigs above the litter surface. This behavioral difference potentially results in decreased tick contact with humans in the south, and fewer cases of Lyme disease. We studied whether north-south differences in tick survival patterns might contribute to this phenomenon. Four month old larvae resulting from a cross between Wisconsin males and South Carolina females died faster under southern than under northern conditions in the lab, as has previously been reported for ticks from both northern and southern populations. However, newly-emerged larvae from Rhode Island parents did not differ consistently in mortality under northern and southern conditions, possibly because of their younger age. Survival is lower, and so the north-south survival difference might be greater in older ticks. Larval survival was positively related to larval size (as measured by scutal area), while survival was positively related to larval fat content in some, but not all, trials. The difference in larval survival under northern vs. southern conditions might simply result from faster metabolism under warmer southern conditions leading to shorter life spans. However, ticks consistently died faster under southern than under northern conditions in the laboratory when relative humidity was low (75%), but not under moderate (85%) or high (95%) RH. Therefore, mortality due to desiccation stress is greater under southern than under northern conditions. We hypothesize that mortality resulting from the greater desiccation stress under southern conditions acts as a selective pressure resulting in the evolution of host-seeking behavior in which immatures remain below the leaf litter surface in southern I. scapularis populations, so as to avoid the desiccating conditions at the surface. If this hypothesis is correct, it has implications for the effect of climate change on the future distribution of Lyme disease

    Temporal dynamics of the tick Ixodes ricinus in northern Europe : epidemiological implications

    No full text
    Background Tick-borne pathogens pose an increasing threat to human and veterinary health across the northern hemisphere. While the seasonal activity of ticks is largely determined by climatic conditions, host-population dynamics are also likely to affect tick abundance. Consequently, abundance fluctuations of rodents in northern Europe are expected to be translated into tick dynamics, and can hence potentially affect the circulation of tick-borne pathogens. We quantified and explained the temporal dynamics of the tick Ixodes ricinus in the northernmost part of its European geographical range, by estimating (i) abundance in vegetation and (ii) infestation load in the most common rodent species in the study area, the bank vole Myodes glareolus. Results Ixodes ricinus nymphs and adult females, the life stages responsible for the most of tick bites in humans, peaked in May-June and August-September. Larvae and nymphs were simultaneously active in June and abundance of questing larvae and nymphs in the vegetation showed a positive association with bank vole abundance. Moreover, infesting larvae and nymphs were aggregated on bank voles, and the infestation of bank voles with I. ricinus larvae and nymphs was positively associated with bank vole abundance. Conclusion Our results indicate early summer and early autumn as periods of increased risk for humans to encounter I. ricinus ticks in boreal urban forests and suggest a 2 years life-cycle for I. ricinus with two cohorts of ticks during the same year. Moreover, we identified a simultaneous activity of larvae and nymphs which allows co-feeding on the rodent host, which in turn supports the transmission of several important zoonotic tick-borne pathogens. Finally, we showed that a high density of the rodent host may enhance the risk that ticks and, potentially, tick-borne pathogens pose to human health.peerReviewe
    corecore