40 research outputs found

    COMPARISON AND IDENTIFICATION OF FACTORS INFLUENCING THE FLAVORS OF ENTERAL NUTRITION AGENTS

    Get PDF
    Objective:The flavor of an enteral nutrition formula affects medication adherence as well as patient's nutritional status and therapeutic efficiency on the major pathology. Therefore, it is important for medical professionals to understand the flavors of enteral nutrition formulas. This study aimed to evaluate the flavors of enteral nutrition formulas and examine the factors influencing these flavors. Methods:A total of 304 students in a pharmaceutical department were subjected to a semantic differential sensory evaluation in which they compared the flavors of digestion and semi-digestion enteral nutrition formulas using a five-point scale. In addition, factors related to good flavor were extracted via factor analyses, and subjected to a covariance structure analysis.Results:In the flavor comparison between digestion and semi-digestion nutrition formulas, semi-digestion nutrition agents scored significantly higher than digestion nutrition formulas did (Welch's t test, P < 0.001, 95% confidence interval [CI] = 0.69–0.99). The factor analyses extracted three subscales of factors related to good flavor: impression of taking, feeling of presence and sense of richness. In a path analysis model to determine the influence of these factor subscales on flavor, impression of taking feeling of presence were found to have significant influences (index of goodness of fit: χ2 = 474.883, df = 62, P < 0.001, GFI = 0.938, AGFI = 0.909, RMSEA = 0.079).Conclusion:Flavor affects medication adherence to enteral nutrition. Therefore, it is important for medical professionals to understand the factors that influence flavor and thus provide patients with better nutrition formulas

    The Inhibition of Lipase and Glucosidase Activities by Acacia Polyphenol

    Get PDF
    Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia mearnsii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. In an in vitro study, we measured the inhibitory activity of AP on lipase and glucosidase. In addition, we evaluated the effects of AP on absorption of orally administered olive oil, glucose, maltose, sucrose and starch solution in mice. We found that AP concentration-dependently inhibited the activity of lipase, maltase and sucrase with an IC50 of 0.95, 0.22 and 0.60 mg ml−1, respectively. In ICR mice, olive oil was administered orally immediately after oral administration of AP solution, and plasma triglyceride concentration was measured. We found that AP significantly inhibited the rise in plasma triglyceride concentration after olive oil loading. AP also significantly inhibited the rise in plasma glucose concentration after maltose and sucrose loading, and this effect was more potent against maltose. AP also inhibited the rise in plasma glucose concentration after glucose loading and slightly inhibited it after starch loading. Our results suggest that AP inhibits lipase and glucosidase activities, which leads to a reduction in the intestinal absorption of lipids and carbohydrates

    Anti-Obesity and Anti-Diabetic Effects of Acacia Polyphenol in Obese Diabetic KKAy Mice Fed High-Fat Diet

    Get PDF
    Acacia polyphenol (AP) extracted from the bark of the black wattle tree (Acacia meansii) is rich in unique catechin-like flavan-3-ols, such as robinetinidol and fisetinidol. The present study investigated the anti-obesity/anti-diabetic effects of AP using obese diabetic KKAy mice. KKAy mice received either normal diet, high-fat diet or high-fat diet with additional AP for 7 weeks. After the end of administration, body weight, plasma glucose and insulin were measured. Furthermore, mRNA and protein expression of obesity/diabetic suppression-related genes were measured in skeletal muscle, liver and white adipose tissue. As a result, compared to the high-fat diet group, increases in body weight, plasma glucose and insulin were significantly suppressed for AP groups. Furthermore, compared to the high-fat diet group, mRNA expression of energy expenditure-related genes (PPARα, PPARδ, CPT1, ACO and UCP3) was significantly higher for AP groups in skeletal muscle. Protein expressions of CPT1, ACO and UCP3 for AP groups were also significantly higher when compared to the high-fat diet group. Moreover, AP lowered the expression of fat acid synthesis-related genes (SREBP-1c, ACC and FAS) in the liver. AP also increased mRNA expression of adiponectin and decreased expression of TNF-α in white adipose tissue. In conclusion, the anti-obesity actions of AP are considered attributable to increased expression of energy expenditure-related genes in skeletal muscle, and decreased fatty acid synthesis and fat intake in the liver. These results suggest that AP is expected to be a useful plant extract for alleviating metabolic syndrome

    Wound-Healing and Skin-Moisturizing Effects of Sasa veitchii Extract

    No full text
    Sasa veitchii (S. veitchii) is a traditional herb derived from the bamboo genus, which is collectively called Kumazasa. Although Kumazasa extract is believed to have various effects on the skin, there is little scientific evidence for these effects. In this study, we aimed to obtain scientific evidence regarding the wound-healing and skin-moisturizing effects of Kumazasa extract. Kumazasa extract was applied to the skin of a mouse wound model for 14 days, and the wound area and dermal water content were measured. Mice treated with Kumazasa extract had smaller wound areas than control mice. The dermal water content in the Kumazasa extract-treated group was significantly higher than that in the control group. The mRNA and protein expression levels of cutaneous aquaporin-3 (AQP3), which is involved in wound healing and increases in dermal water content, were significantly increased by treatment with Kumazasa extract. Kumazasa extract-treated HaCaT cells exhibited significantly higher AQP3 expression and p38 mitogen-activated protein kinase (MAPK) phosphorylation than control cells. With continuous application, Kumazasa extract increases AQP3 expression and exerts wound-healing and moisturizing effects. The increase in AQP3 expression elicited by Kumazasa extract may be due to enhancement of transcription via activation of p38 MAPK signaling

    Study of the Mechanism Underlying the Onset of Diabetic Xeroderma Focusing on an Aquaporin-3 in a Streptozotocin-Induced Diabetic Mouse Model

    No full text
    Xeroderma is a frequent complication in diabetic patients. In this study, we investigated the mechanism underlying the onset of diabetic xeroderma, focusing on aquaporin-3 (AQP3), which plays an important role in water transport in the skin. Dermal water content in diabetic mice was significantly lower than that in control mice. The expression level of AQP3 in the skin was significantly lower in diabetic mice than in control mice. One week after streptozotocin (STZ) treatment, despite their increased blood glucose levels, mice showed no changes in the expression levels of AQP3, Bmal1, Clock, and D site-binding protein (Dbp) in the skin and 8-hydroxydeoxyguanosine (8-OHdG) in the urine. In contrast, two weeks after STZ treatment, mice showed increases in the blood glucose level, decreases in AQP3, Bmal1, Clock, and Dbp levels, and increases in the urinary levels of 8-OHdG. The results of this study suggest that skin AQP3 expression decreases in diabetes, which may limit water transport from the vessel side to the corneum side, causing dry skin. In addition, in diabetic mice, increased oxidative stress triggered decreases in the expression levels of Bmal1 and Clock in the skin, thereby inhibiting the transcription of Aqp3 by Dbp, which resulted in decreased AQP3 expression

    大腸におけるアクアポリン3の機能解析とその発現制御機構の解明

    No full text

    Aquaporins in the Colon as a New Therapeutic Target in Diarrhea and Constipation

    No full text
    Aquaporins (AQPs) play important roles in the water transport system in the human body. There are currently 13 types of AQP, AQP0 through AQP12, which are expressed in various organs. Many members of the AQP family are expressed in the intestinal tract. AQP3 is predominantly expressed in the colon, ultimately controlling the water transport. Recently, it was clarified that several laxatives exhibit a laxative effect by changing the AQP3 expression level in the colon. In addition, it was revealed that morphine causes severe constipation by increasing the AQP3 expression level in the colon. These findings have shown that AQP3 is one of the most important functional molecules in water transport in the colon. This review will focus on the physiological and pathological roles of AQP3 in the colon, and discuss clinical applications of colon AQP3

    Quality Evaluation of Original Product and Generic Versions of Clarithromycin Dry Syrup

    No full text

    Inhibitory Effects of Daiokanzoto (Da-Huang-Gan-Cao-Tang) on P-Glycoprotein

    Get PDF
    We have studied the effects of various Kampo medicines on P-glycoprotein (P-gp), a drug transporter, in vitro. The present study focused on Daiokanzoto (Da-Huang-Gan-Cao-Tang), which shows the most potent inhibitory effects on P-gp among the 50 Kampo medicines studied, and investigated the P-gp inhibitory effects of Daiokanzoto herbal ingredients (rhubarb and licorice root) and their components by an ATPase assay using human P-gp membrane. Both rhubarb and licorice root significantly inhibited ATPase activity, and the effects of rhubarb were more potent than those of licorice root. The content of rhubarb in Daiokanzoto is double that in licorice root, and the inhibition patterns of Daiokanzoto and rhubarb involve both competitive and noncompetitive inhibition, suggesting that the inhibitory effects of Daiokanzoto are mainly due to rhubarb. Concerning the components of rhubarb, concentration-dependent inhibitory effects were observed for (−)-catechin gallate, (−)-epicatechin gallate, and (−)-epigallocatechin gallate. In conclusion, rhubarb may cause changes in the drug dispositions of P-gp substrates through the inhibition of P-gp. It appears that attention should be given to the interactions between these drugs and Kampo medicines containing rhubarb as an herbal ingredient

    Inhibitory Effect of Polyphenol-Rich Fraction from the Bark of Acacia mearnsii

    Get PDF
    We examined the inhibitory effect of polyphenol-rich aqueous extract from the bark of Acacia mearnsii (PrA) on itching associated with atopic dermatitis (AD). HR-1 mice were fed a normal diet, special diet (AD group), or special diet containing 3% PrA (PrA group) for 6 weeks. In the AD group, itching frequency and transepidermal water loss increased compared to the control group. In the PrA group, an improvement in atopic dermatitis symptoms was observed. Ceramide expression in the skin decreased in the AD group compared to the control group, but no decrease was observed in the PrA group. mRNA expression of ceramidase decreased in the PrA group compared to the AD group. The results of this study have revealed that PrA inhibits itching in atopic dermatitis by preventing the skin from drying. It is considered that the mechanism by which PrA prevents the skin from drying involves the inhibition of increased ceramidase expression associated with atopic dermatitis
    corecore