3 research outputs found

    SNOntology: Myriads of novel snornas or just a mirage?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small nucleolar RNAs (snoRNAs) are a large group of non-coding RNAs (ncRNAs) that mainly guide 2'-O-methylation (C/D RNAs) and pseudouridylation (H/ACA RNAs) of ribosomal RNAs. The pattern of rRNA modifications and the set of snoRNAs that guide these modifications are conserved in vertebrates. Nearly all snoRNA genes in vertebrates are localized in introns of other genes and are processed from pre-mRNAs. Thus, the same promoter is used for the transcription of snoRNAs and host genes.</p> <p>Results</p> <p>The series of studies by Dahai Zhu and coworkers on snoRNAs and their genes were critically considered. We present evidence that dozens of species-specific snoRNAs that they described in vertebrates are experimental artifacts resulting from the improper use of Northern hybridization. The snoRNA genes with putative intrinsic promoters that were supposed to be transcribed independently proved to contain numerous substitutions and are, most likely, pseudogenes. In some cases, they are localized within introns of overlooked host genes. Finally, an increased number of snoRNA genes in mammalian genomes described by Zhu and coworkers is also an artifact resulting from two mistakes. First, numerous mammalian snoRNA pseudogenes were considered as genes, whereas most of them are localized outside of host genes and contain substitutions that question their functionality. Second, Zhu and coworkers failed to identify many snoRNA genes in non-mammalian species. As an illustration, we present 1352 C/D snoRNA genes that we have identified and annotated in vertebrates.</p> <p>Conclusions</p> <p>Our results demonstrate that conclusions based only on databases with automatically annotated ncRNAs can be erroneous. Special investigations aimed to distinguish true RNA genes from their pseudogenes should be done. Zhu and coworkers, as well as most other groups studying vertebrate snoRNAs, give new names to newly described homologs of human snoRNAs, which significantly complicates comparison between different species. It seems necessary to develop a uniform nomenclature for homologs of human snoRNAs in other vertebrates, e.g., human gene names prefixed with several-letter code denoting the vertebrate species.</p

    Are the Rhizomyinae and the Spalacinae closely related? Contradistinctive conclusions between genetics and palaeontology

    No full text
    The reconstruction of the evolutionary history of the Rhizomyinae and the Spalacinae based on the fossil record strongly suggests that these do not share the same murid ancestor and developed separately since the early Oligocene. This conclusion is supported by the difference in evolutionary dynamics between these groups during the Miocene and Pliocene. Molecular genetic studies of extant representatives of the Rhizomyinae, Spalacinae and Myospalacinae, however, suggest that these subfamilies share similarities that distinguish them from all other Muridae. As a result, geneticists unite these subfamilies into the family Spalacidae and consider the Spalacidae and the Muridae to be sister lineages. Until the conflict between the two disciplines is resolved we prefer to maintain the Rhizomyinae and the Spalacinae as two subfamilies within the family Muridae (superfamily Muroidea)
    corecore