136 research outputs found

    Snout Shape in Extant Ruminants

    Get PDF
    Copyright: © 2014 Tennant, MacLeod. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article

    The potential for land sparing to offset greenhouse gas emissions from agriculture

    Get PDF
    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing-increasing agricultural yields, reducing farm land area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the United Kingdom as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential, however economic and implementation considerations might limit the degree to which this technical potential could be realised in practice.This research was funded by the Cambridge Conservation Initiative Collaborative Fund for Conservation and we thank its major sponsor Arcadia. We thank J. Bruinsma for the provision of demand data, the CEH for the provision of soil data and J. Spencer for invaluable discussions. A.L. was supported by a Gates Cambridge Scholarship.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nclimate291

    Emergence and Persistence of Minor Drug-Resistant HIV-1 Variants in Ugandan Women after Nevirapine Single-Dose Prophylaxis

    Get PDF
    BACKGROUND: Nevirapine (NVP) single-dose is still a widely used antiretroviral prophylaxis for the prevention of vertical HIV-1 transmission in resource-limited settings. However, the main disadvantage of the Non-nucleoside Reverse Transcriptase Inhibitor (NNRTI) NVP is the rapid selection of NVP-resistant virus with negative implications for subsequent NNRTI-based long-term antiretroviral therapy (ART). Here, we analysed the emergence of drug-resistant HIV-1 including minor variants in the early phase after NVP single-dose prophylaxis and the persistence of drug-resistant virus over time. METHODS AND FINDINGS: NVP-resistant HIV-1 harbouring the K103N and/or Y181C resistance mutations in the HIV-1 reverse transcriptase gene was measured from 1 week up to 18 months after NVP single-dose prophylaxis in 29 Ugandan women using allele-specific PCR assays capable of detecting drug-resistant variants representing less than 1% of the whole viral population. In total, drug-resistant HIV-1 was identified in 18/29 (62%) women; rates increased from 18% to 38% and 44% at week 1, 2, 6, respectively, and decreased to 18%, 25%, 13% and 4% at month 3, 6, 12 and 18, respectively. The proportion of NVP-resistant virus of the total viral population was significantly higher in women infected with subtype D (median 40.5%) as compared to subtype A (median 1.3%; p = 0.032, Mann-Whitney U test). 33% of resistant virus was not detectable at week 2 but was for the first time measurable 6-12 weeks after NVP single-dose prophylaxis. Three (10%) women harboured resistant virus in proportions >10% still at month 6. CONCLUSIONS: Current WHO guidelines recommend an additional postnatal intake of AZT and 3TC for one week to avoid NVP resistance formation. Our findings indicate that a 1-week medication might be too short to impede the emergence of NVP resistance in a substantial proportion of women. Furthermore, subsequent NNRTI-based ART should not be started earlier than 12 months after NVP single-dose prophylaxis

    Culture-Independent Microbiological Analysis of Foley Urinary Catheter Biofilms

    Get PDF
    Background: Prevention of catheter-associated urinary tract infection (CAUTI), a leading cause of nosocomial disease, is complicated by the propensity of bacteria to form biofilms on indwelling medical devices [1,2,3,4,5]. Methodology/Principal Findings: To better understand the microbial diversity of these communities, we report the results of a culture-independent bacterial survey of Foley urinary catheters obtained from patients following total prostatectomy. Two patient subsets were analyzed, based on treatment or no treatment with systemic fluoroquinolone antibiotics during convalescence. Results indicate the presence of diverse polymicrobial assemblages that were most commonly observed in patients who did not receive systemic antibiotics. The communities typically contained both Gram-positive and Gramnegative microorganisms that included multiple potential pathogens. Conclusion/Significance: Prevention and treatment of CAUTI must take into consideration the possible polymicrobial nature of any particular infection

    PRKCA Polymorphism Changes the Neural Basis of Episodic Remembering in Healthy Individuals

    Get PDF
    Everyday functioning relies on episodic memory, the conscious retrieval of past experiences, but this crucial cognitive ability declines severely with aging and disease. Vulnerability to memory decline varies across individuals however, producing differences in the time course and severity of memory problems that complicate attempts at diagnosis and treatment. Here we identify a key source of variability, by examining gene dependent changes in the neural basis of episodic remembering in healthy adults, targeting seven polymorphisms previously linked to memory. Scalp recorded Event-Related Potentials (ERPs) were measured while participants remembered words, using an item recognition task that requires discrimination between studied and unstudied stimuli. Significant differences were found as a consequence of a Single Nucleotide Polymorphism (SNP) in just one of the tested genes, PRKCA (rs8074995). Participants with the common G/G variant exhibited left parietal old/new effects, which are typically seen in word recognition studies, reflecting recollection-based remembering. During the same stage of memory retrieval participants carrying a rarer A variant exhibited an atypical pattern of brain activity, a topographically dissociable frontally-distributed old/new effect, even though behavioural performance did not differ between groups. Results replicated in a second independent sample of participants. These findings demonstrate that the PRKCA genotype is important in determining how episodic memories are retrieved, opening a new route towards understanding individual differences in memory

    DataSHIELD: Taking the analysis to the data, not the data to the analysis

    Get PDF
    \ua9 The Author 2014; all rights reserved. Background: Research in modern biomedicine and social science requires sample sizes so large that they can often only be achieved through a pooled co-analysis of data from several studies. But the pooling of information from individuals in a central database that may be queried by researchers raises important ethico-legal questions and can be controversial. In the UK this has been highlighted by recent debate and controversy relating to the UK\u27s proposed \u27care.data\u27 initiative, and these issues reflect important societal and professional concerns about privacy, confidentiality and intellectual property. DataSHIELD provides a novel technological solution that can circumvent some of the most basic challenges in facilitating the access of researchers and other healthcare professionals to individual-level data. Methods: Commands are sent from a central analysis computer (AC) to several data computers (DCs) storing the data to be co-analysed. The data sets are analysed simultaneously but in parallel. The separate parallelized analyses are linked by non-disclosive summary statistics and commands transmitted back and forth between the DCs and the AC. This paper describes the technical implementation of DataSHIELD using a modified R statistical environment linked to an Opal database deployed behind the computer firewall of each DC. Analysis is controlled through a standard R environment at the AC. Results: Based on this Opal/R implementation, DataSHIELD is currently used by the Healthy Obese Project and the Environmental Core Project (BioSHaRE-EU) for the federated analysis of 10 data sets across eight European countries, and this illustrates the opportunities and challenges presented by the DataSHIELD approach. Conclusions: DataSHIELD facilitates important research in settings where: (i) a co-analysis of individual-level data from several studies is scientifically necessary but governance restrictions prohibit the release or sharing of some of the required data, and/or render data access unacceptably slow; (ii) a research group (e.g. in a developing nation) is particularly vulnerable to loss of intellectual property-the researchers want to fully share the information held in their data with national and international collaborators, but do not wish to hand over the physical data themselves; and (iii) a data set is to be included in an individual-level co-analysis but the physical size of the data precludes direct transfer to a new site for analysis

    Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia

    Get PDF
    Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities

    Estimation of Ligament Loading and Anterior Tibial Translation in Healthy and ACL-Deficient Knees During Gait and the Influence of Increasing Tibial Slope Using EMG-Driven Approach

    Get PDF
    The purpose of this study was to develop a biomechanical model to estimate anterior tibial translation (ATT), anterior shear forces, and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. This model used electromyography (EMG), joint position, and force plate data as inputs to calculate ligament loading during stance phase. First, an EMG-driven model was used to calculate forces for the major muscles crossing the knee joint. The calculated muscle forces were used as inputs to a knee model that incorporated a knee–ligament model in order to solve for ATT and ligament forces. The model took advantage of using EMGs as inputs, and could account for the abnormal muscle activation patterns of ACL-deficient gait. We validated our model by comparing the calculated results with previous in vitro, in vivo, and numerical studies of healthy and ACL-deficient knees, and this gave us confidence on the accuracy of our model calculations. Our model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. Although strong co-contraction of knee flexors was found to help restrain ATT in the ACL-deficient knee, it did not counteract the effect of ACL rupture. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope inclination in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees
    corecore