6 research outputs found

    Enhancement of the activity of phenoxodiol by cisplatin in prostate cancer cells

    Get PDF
    Phenoxodiol is a novel isoflav-3-ene, currently undergoing clinical trials, that has a broad in vitro activity against a number of human cancer cell lines. Phenoxodiol alone inhibited DU145 and PC3 in a dose- and time-dependent manner with IC50 values of 8±1 and 38±9 μM, respectively. The combination of phenoxodiol and cisplatin was synergistic in DU145, and additive in PC3, as assessed by the Chou–Talalay method. Carboplatin was also synergistic in combination with phenoxodiol in DU145 cells. The activity of the phenoxodiol and cisplatin combination was confirmed in vivo using a DU145 xenograft model in nude mice. Pharmacokinetic data from these mice suggest that the mechanism of synergy may occur through a pharmacodynamic mechanism. An intracellular cisplatin accumulation assay showed a 35% (P<0.05) increase in the uptake of cisplatin when it was combined in a ratio of 1 μM: 5 μM phenoxodiol, resulting in a 300% (P<0.05) increase in DNA adducts. Taken together, our results suggest that phenoxodiol has interesting properties that make combination therapy with cisplatin or carboplatin appealing

    Prostate Cancer-Specific and Potent Antitumor Effect of a DD3-Controlled Oncolytic Virus Harboring the PTEN Gene

    Get PDF
    Prostate cancer is a major health problem for men in Western societies. Here we report a Prostate Cancer-Specific Targeting Gene-Viro-Therapy (CTGVT-PCa), in which PTEN was inserted into a DD3-controlled oncolytic viral vector (OV) to form Ad.DD3.E1A.E1B(Δ55)-(PTEN) or, briefly, Ad.DD3.D55-PTEN. The woodchuck post-transcriptional element (WPRE) was also introduced at the downstream of the E1A coding sequence, resulting in much higher expression of the E1A gene. DD3 is one of the most prostate cancer-specific genes and has been used as a clinical bio-diagnostic marker. PTEN is frequently inactivated in primary prostate cancers, which is crucial for prostate cancer progression. Therefore, the Ad.DD3.D55-PTEN has prostate cancer specific and potent antitumor effect. The tumor growth rate was almost completely inhibited with the final tumor volume after Ad.DD3.D55-PTEN treatment less than the initial volume at the beginning of Ad.DD3.D55-PTEN treatment, which shows the powerful antitumor effect of Ad.DD3.D55-PTEN on prostate cancer tumor growth. The CTGVT-PCa construct reported here killed all of the prostate cancer cell lines tested, such as DU145, 22RV1 and CL1, but had a reduced or no killing effect on all the non-prostate cancer cell lines tested. The mechanism of action of Ad.DD3.D55-PTEN was due to the induction of apoptosis, as detected by TUNEL assays and flow cytometry. The apoptosis was mediated by mitochondria-dependent and -independent pathways, as determined by caspase assays and mitochondrial membrane potential

    Sensitisation to mitoxantrone-induced apoptosis by the oncolytic adenovirus Ad Delta Delta through Bcl-2-dependent attenuation of autophagy

    No full text
    Anti-apoptotic Bcl-2 is frequently activated in human malignant cells to promote cell survival and inhibit cell death. Replication-selective oncolytic adenoviruses deleted in the functional Bcl-2 homologue E1B19K potently synergise with apoptosis-inducing chemotherapeutic drugs, including mitoxantrone for prostate cancer. Here, we demonstrate that our previously generated oncolytic mutant Ad∆∆ (E1B19K- and E1ACR2-deleted) caused potent synergistic apoptotic cell death in both drug-sensitive 22Rv1, and drug-insensitive PC3 and PC3M prostate cancer cells. The synergistic cell killing was dependent on Bcl-2 expression and was prevented by Bcl-2 knockdown, which led to activation of the autophagy pathway. Mitoxantrone-induced autophagy, which was decreased in combination with Ad∆∆-infection resulting in increased apoptosis. Expression of the viral E1A12S protein alone mimicked the synergistic effects with Ad∆∆ in combination with mitoxantrone while intact wild-type virus (Ad5) had no effect. Early and late-stage inhibition of autophagy by Atg7 knockdown and chloroquine respectively, promoted apoptotic cell killing with mitoxantrone similar to Ad∆∆. These findings revealed currently unexplored actions of E1B19K-deleted oncolytic adenoviruses and the central role of Bcl-2 in the synergistic cell killing. This study suggests that cancers with functional Bcl-2 expression may be selectively re-sensitised to drugs by Ad∆∆
    corecore