7 research outputs found

    Cadherin-9 Is a Novel Cell Surface Marker for the Heterogeneous Pool of Renal Fibroblasts

    Get PDF
    BACKGROUND: Interstitial fibroblasts are a minor, but nevertheless very important, component of the kidney. They secrete and remodel extracellular matrix and they produce active compounds such as erythropoietin. However, studying human renal fibroblasts has been hampered by the lack of appropriate surface markers. METHODS AND FINDINGS: The expression of cadherin-9 in various human renal cell lines and tissues was studied on the mRNA level by RT-PCR and on the protein level with the help of newly generated cadherin-9 antibodies. The classical type II cadherin-9, so far only described in the neural system, was identified as a reliable surface marker for renal fibroblasts. Compared to FSP1, a widely-used cytosolic renal fibroblast marker, cadherin-9 showed a more restricted expression pattern in human kidney. Under pathological conditions, cadherin-9 was expressed in the stroma of renal cell carcinoma, but not in the tumor cells themselves, and in renal fibrosis the percentage of cadherin-9-positive cells was clearly elevated 3 to 5 times compared to healthy kidney tissue. Induction of epithelial mesenchymal transition in renal epithelial cells with cyclosporin-A, which causes renal fibrosis as a side effect, induced cadherin-9 expression. Functional studies following siRNA-mediated knockdown of cadherin-9 revealed that it acts in the kidney like a typical classical cadherin. It was found to be associated with catenins and to mediate homophilic but not heterophilic cell interactions. CONCLUSIONS: Cadherin-9 represents a novel and reliable cell surface marker for fibroblasts in healthy and diseased kidneys. Together with the established marker molecules FSP1, CD45 and alpha smooth muscle actin, cadherin-9 can now be used to differentiate the heterogenic pool of renal fibroblasts into resident and activated fibroblasts, immigrated bone marrow derived fibroblast precursors and cells in different stages of epithelial mesenchymal transition

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Specification of synaptic connectivity by cell surface interactions

    No full text
    corecore