19 research outputs found
Observables and initial conditions for rotating and expanding fireballs with spheroidal symmetry
Utilizing a recently found class of exact, analytic rotating solutions of
non-relativistic fireball hydrodynamics, we calculate analytically the
single-particle spectra, the elliptic flows and two-particle Bose-Einstein
correlation functions for rotating and expanding fireballs with spheroidal
symmetry. We demonstrate, that rotation generates final state momentum
anisotropies even for a spatially symmetric, spherical initial geometry of the
fireball. The mass dependence of the effective temperatures, as well as the HBT
radius parameters and the elliptic flow are shown to be sensitive not only to
radial flow effects but also to the magnitude of the initial angular momentum.Comment: 26 pages, with 18 .eps figures. Dedicated to L. P. Csernai on the
occasion of his 65th birthday. Invited talk of T. Cs\"org\H{o} at the
International Workshop on Collectivity in Relativistic Heavy Ion Collisions,
Kolymbari, Crete,Greece, 14-20 September 2014, I.F. Barna at WPCF 2014,
Gy\"ongy\"os, Hungary, 25-29 August 2014, and M. I. Nagy at WPCF 2015,
Warsaw, Poland, 3-7 November 201
Analytic traveling-wave solutions of the Kardar-Parisi-Zhang interface growing equation with different kind of noise terms
The one-dimensional Kardar-Parisi-Zhang dynamic interface growth equation
with the traveling-wave Ansatz is analyzed. As a new feature additional
analytic terms are added. From the mathematical point of view, these can be
considered as various noise distribution functions. Six different cases were
investigated among others Gaussian, Lorentzian, white or even pink noise.
Analytic solutions are evaluated and analyzed for all cases. All results are
expressible with various special functions Mathieu, Bessel, Airy or Whittaker
functions showing a very rich mathematical structure with some common general
characteristics. This study is the continuation of our former work, where the
same physical phenomena was investigated with the self-similar Ansatz. The
differences and similarities among the various solutions are enlightened.Comment: 14 pages,14 figures. arXiv admin note: text overlap with
arXiv:1904.0183
EuPRAXIA - A Compact, Cost-Efficient Particle and Radiation Source
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (âEuropean Plasma Research Accelerator with eXcellence In Applicationsâ) aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure
EuPRAXIA conceptual design report
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science â through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8â10 years
EuPRAXIA conceptual design report
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science â through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facility within 8â10 years
EuPRAXIA - A compact, cost-efficient particle and radiation source
Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure