33 research outputs found

    Chromosomal Location of HCA1 and HCA2, Hybrid Chlorosis Genes in Rice

    Get PDF
    Many postzygotic reproductive barrier forms have been reported in plants: hybrid weakness, hybrid necrosis, and hybrid chlorosis. In this study, linkage analysis of the genes causing hybrid chlorosis in F2 generation in rice, HCA1 and HCA2, was performed. HCA1 and HCA2 are located respectively on the distal regions of the short arms of chromosomes 12 and 11. These regions are known to be highly conserved as a duplicated chromosomal segment. The molecular mechanism causing F2 chlorosis deduced from the location of the two genes was discussed. The possibility of the introgression of the chromosomal segments encompassing HCA1 and/or HCA2 was also discussed from the viewpoint of Indica-Japonica differentiation

    稲作北限地域のイネ品種の弱感光性に関する遺伝学的解析

    Get PDF
    京都大学0048新制・課程博士博士(農学)甲第7532号農博第1022号新制||農||771(附属図書館)学位論文||H10||N3209(農学部図書室)UT51-98-W276京都大学大学院農学研究科農学専攻(主査)教授 池橋 宏, 教授 堀江 武, 教授 天野 髙久学位規則第4条第1項該当Doctor of Agricultural ScienceKyoto UniversityDA

    New Hybrid Spikelet Sterility Gene Found in Interspecific Cross between Oryza sativa and O. meridionalis

    No full text
    Various kinds of reproductive barriers have been reported in intraspecific and interspecific crosses between the AA genome Oryza species, to which Asian rice (O. sativa) and African rice (O. glaberrima) belong. A hybrid seed sterility phenomenon was found in the progeny of the cross between O. sativa and O. meridionalis, which is found in Northern Australia and Indonesia and has diverged from the other AA genome species. This phenomenon could be explained by an egg-killer model. Linkage analysis using DNA markers showed that the causal gene was located on the distal end of chromosome 1. Because no known egg-killer gene was located in that chromosomal region, this gene was named HYBRID SPIKELET STERILITY 57 (abbreviated form, S57). In heterozygotes, the eggs carrying the sativa allele are killed, causing semi-sterility. This killer system works incompletely: some eggs carrying the sativa allele survive and can be fertilized. The distribution of alleles in wild populations of O. meridionalis was discussed from the perspective of genetic differentiation of populations

    Chromosomal Location of xa19, a Broad-Spectrum Rice Bacterial Blight Resistant Gene from XM5, a Mutant Line from IR24

    No full text
    Bacterial blight is an important rice disease caused by bacteria named Xanthomonas oryzae pv. oryzae (Xoo). XM5 is an Xoo resistant mutant line with the genetic background of IR24, an Indica Xoo susceptible cultivar, induced by a chemical mutagen N-methyl-N-nitrosourea (MNU). XM5 carries a recessive Xoo resistant gene, xa19. Trisomic analysis was conducted using the cross between XM5 and the trisomic series under the genetic background of IR24, showing that xa19 was located on chromosome 7. The approximate chromosomal location was found using 37 surely resistant plants in the F2 population from XM5 × Kinmaze, which was susceptible to most Japanese Xoo races. The IAS44 line carries a Japonica cultivar Asominori chromosomal segment covering the xa19 locus under the IR24 genetic background. Linkage analysis using the F2 population from the cross between XM5 and IAS44 revealed that xa19 was located within the 0.8 cM region between RM8262 and RM6728. xa19 is not allelic to the known Xoo resistant genes. However, its location suggests that it might be allelic to a lesion-mimic mutant gene spl5, some alleles of which are resistant to several Xoo races. Together with xa20 and xa42, three Xoo resistant genes were induced from IR24 by MNU. The significance of chemical mutagen as a source of Xoo resistance was discussed

    QTL Analysis Revealed One Major Genetic Factor Inhibiting Lesion Elongation by Bacterial Blight (<i>Xanthomonas oryzae</i> pv. <i>oryzae</i>) from a <i>japonica</i> Cultivar Koshihikari in Rice

    No full text
    Xanthomonas oryzae pv. oryzae (Xoo) is a pathogen that has ravaged the rice industry as the causal agent of bacterial blight (BB) diseases in rice. Koshihikari (KO), an elite japonica cultivar, and ARC7013 (AR), an indica cultivar, are both susceptible to Xoo. Their phenotypic characteristics reveal that KO has shorter lesion length than that of AR. The F2 population from KO × AR results in continuous distribution of lesion length by inoculation of an Xoo race (T7147). Consequently, quantitative trait loci (QTL) mapping of the F2 population is conducted, covering 12 chromosomes with 107 simple sequence repeat (SSR) and insertion/deletion (InDel) genetic markers. Three QTLs are identified on chromosomes 2, 5, and 10. Of them, qXAR5 has the strongest resistance variance effect of 20.5%, whereas qXAR2 and qXAR10 have minor QTL effects on resistance variance, with 3.9% and 2.3%, respectively, for a total resistance variance of 26.7%. The QTLs we examine for this study differ from the loci of BB resistance genes from earlier studies. Our results can help to facilitate understanding of genetic and morphological fundamentals for use in rice breeding programs that are more durable against evolving Xoo pathogens and uncertain climatic temperature

    Molecular and morphological divergence of Australian wild rice

    No full text
    Two types of perennial wild rice, Australian Oryza rufipogon and a new taxon Jpn2 have been observed in Australia in addition to the annual species Oryza meridionalis. Jpn2 is distinct owing to its larger spikelet size but shares O. meridionalis-like morphological features including a high density of bristle cells on the awn surface. All the morphological traits resemble O. meridionalis except for the larger spikelet size. Because Jpn2 has distinct cytoplasmic genomes, including the chloroplast (cp), cp insertion/deletion/simple sequence repeats were designed to establish marker systems to distinguish wild rice in Australia in different natural populations. It was shown that the new taxon is distinct from Asian O. rufipogon but instead resembles O. meridionalis. In addition, higher diversity was detected in north-eastern Australia. Reproductive barriers among species and Jpn2 tested by cross-hybridization suggested a unique biological relationship of Jpn2 with other species. Insertions of retrotransposable elements in the Jpn2 genome were extracted from raw reads generated using next-generation sequencing. Jpn2 tended to share insertions with other O. meridionalis accessions and with Australian O. rufipogon accessions in particular cases, but not Asian O. rufipogon except for two insertions. One insertion was restricted to Jpn2 in Australia and shared with some O. rufipogon in Thailand

    A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1) gene homolog in foxtail millet, broadly found in landraces from Europe and Asia

    Get PDF
    We investigated genetic variation of a rice HEADING DATE 1(HD1) homolog in foxtail millet. First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions (including Yugu 1, a Chinese cultivar used for genome sequencing) from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor
    corecore