5,308 research outputs found

    The Dwarf Nova Outbursts of Nova Her 1960 (=V446 Her)

    Get PDF
    V446 Her is the best example of an old nova which has developed dwarf nova eruptions in the post-nova state. We report on observed properties of the long-term light curve of V446 Her, using photometry over 19 years. Yearly averages of the outburst magnitudes shows a decline of ~0.013 mag/yr, consistent with the decline of other post-novae that do not have dwarf nova outbursts. Previous suggestions of bimodal distributions of the amplitudes and widths of the outbursts are confirmed. The outbursts occur at a mean spacing of 18 days but the range of spacings is large (13-30 days). From simulations of dwarf nova outbursts it has been predicted that the outburst spacing in V446 Her will increase as M-dot from the red dwarf companion slowly falls following the nova; however the large intrinsic scatter in the spacings serves to hide any evidence of this effect. We do find a systematic change in the outburst pattern in which the brighter, wider type of outbursts disappeared after late 2003, and this phenomenon is suggested to be due to falling M-dot following the nova.Comment: To appear at the Astronomical Journal; 7 pages, 1 table, 11 figure

    Effectively Closed Infinite-Genus Surfaces and the String Coupling

    Full text link
    The class of effectively closed infinite-genus surfaces, defining the completion of the domain of string perturbation theory, can be included in the category OGO_G, which is characterized by the vanishing capacity of the ideal boundary. The cardinality of the maximal set of endpoints is shown to be 2^{\mit N}. The product of the coefficient of the genus-g superstring amplitude in four dimensions by 2g2^g in the gg\to \infty limit is an exponential function of the genus with a base comparable in magnitude to the unified gauge coupling. The value of the string coupling is consistent with the characteristics of configurations which provide a dominant contribution to a finite vacuum amplitude.Comment: TeX, 33 page

    Distance Measurement of Galaxies to Redshift of 0.1 using the CO-Line Tully-Fisher Relation

    Get PDF
    We report on the first results of a long-term project to derive distances of galaxies at cosmological distances by applying the CO-line width-luminosity relation. We have obtained deep CO-line observations of galaxies at redshifts up to 29,000 km/s using the Nobeyama 45-m mm-wave Telescope, and some supplementary data were obtained by using the IRAM 30-m telescope. We have detected the CO line emission for several galaxies, and used their CO line widths to estimate the absolute luminosities using the line-width-luminosity relation. In order to obtain photometric data and inclination correction, we also performed optical imaging observations of the CO-detected galaxies using the CFHT 3.6-m telescope at high resolution. The radio and optical data have been combined to derive the distance moduli and distances of the galaxies, and Hubble ratios were estimated for these galaxies. We propose that the CO line width-luminosity relation can be a powerful method to derive distances of galaxies to redfhift of z = 0.1 and to derive the Hubble ratio in a significant volume of the universe. Key words: Cosmology - Galaxies: general - Distance scale - CO lineComment: To appear in PASJ, Plain Tex, 3 figures (in 10 ps files

    The Origin of the Young Stars in the Nucleus of M31

    Full text link
    The triple nucleus of M31 consists of a population of old red stars in an eccentric disk (P1 and P2) and another population of younger A stars in a circular disk (P3) around M31's central supermassive black hole (SMBH). We argue that P1 and P2 determine the maximal radial extent of the younger A star population and provide the gas that fueled the starburst that generated P3. The eccentric stellar disk creates an m=1m=1 non-axisymmetric perturbation to the potential. This perturbed potential drives gas into the inner parsec around the SMBH, if the pattern speed of the eccentric stellar disk is Ωp310kms1pc1\Omega_p \lesssim 3-10 {\rm km s^{-1} pc^{-1}}. We show that stellar mass loss from P1 and P2 is sufficient to create a gravitationally unstable gaseous disk of \sim 10^5\Msun every 0.110.1-1 Gyrs, consistent with the 200 Myr age of P3. Similar processes may act in other systems to produce very compact nuclear starbursts.Comment: 10 pages, 7 figures, accepted by ApJ, changes made from referee suggestion

    The Cosmic Neutrino Background and the Age of the Universe

    Full text link
    We discuss the cosmological degeneracy between the age of the Universe, the Hubble parameter and the effective number of relativistic particles N_eff. We show that independent determinations of the Hubble parameter H(z) as those recently provided by Simon,Verde, Jimenez (2006), combined with other cosmological data sets can provide the most stringent constraint on N_eff, yielding N_eff=3.7 (-1.2) (+1.1) at 95% confidence level. A neutrino background is detected with high significance: N_eff >1.8 at better than 99% confidence level. Constraints on the age of the universe in the framework of an extra background of relativistic particles are improved by a factor 3.Comment: JCAP, in pres
    corecore