14 research outputs found

    Species trait shifts in vegetation and soil seed bank during fen degradation

    Get PDF
    Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites

    Restoration of brook valley meadows in the Netherlands

    No full text
    Until recently, restoration measures in Dutch brook valley meadows consisted of re-introducing traditional management techniques, such as mowing without fertilisation and low-intensity grazing. In the Netherlands, additional measures, such as rewetting and sod cutting, are now carried out on a large scale to combat negative influences of drainage and acidifying influences by atmospheric deposition. An analysis of successful and unsuccessful projects shows that restoration of brook valley meadows is most successful if traditional management techniques are applied in recently abandoned fields that had not been drained or fertilised. Large-scale topsoil removal in former agricultural fields that had been used intensively for several decades is often unsuccessful since seed banks are depleted, while hydrological conditions and seed dispersal mechanisms are sub-optimal. In areas with an organic topsoil, long-term drainage had often led to irreversible changes in chemical and physical properties of the soil. Successful sites were all characterised by a regular discharge of calcareous groundwater provided by local or regional hydrological systems, and, where not very long ago, populations of target species existed. On mineral soils, in particular, sod removal in established nature reserves was a successful measure to increase the number of endangered fen meadow species. It is argued that attempts to restore species-rich meadows should be avoided on former agricultural fields, where pedological processeshave led to almost irreversible changes in the soil profile and where soil seed banks have been completely depleted. From a soil conservation point of view, such areas should be exploited as eutrophic wetlands that are regularly flooded
    corecore