35 research outputs found

    High dimensional and high resolution pulse sequences for backbone resonance assignment of intrinsically disordered proteins

    Get PDF
    Four novel 5D (HACA(N)CONH, HNCOCACB, (HACA)CON(CA)CONH, (H)NCO(NCA)CONH), and one 6D ((H)NCO(N)CACONH) NMR pulse sequences are proposed. The new experiments employ non-uniform sampling that enables achieving high resolution in indirectly detected dimensions. The experiments facilitate resonance assignment of intrinsically disordered proteins. The novel pulse sequences were successfully tested using δ subunit (20 kDa) of Bacillus subtilis RNA polymerase that has an 81-amino acid disordered part containing various repetitive sequences

    13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides

    Get PDF
    We present here a set of 13C-direct detected NMR experiments to facilitate the resonance assignment of RNA oligonucleotides. Three experiments have been developed: (1) the (H)CC-TOCSY-experiment utilizing a virtual decoupling scheme to assign the intraresidual ribose 13C-spins, (2) the (H)CPC-experiment that correlates each phosphorus with the C4′ nuclei of adjacent nucleotides via J(C,P) couplings and (3) the (H)CPC-CCH-TOCSY-experiment that correlates the phosphorus nuclei with the respective C1′,H1′ ribose signals. The experiments were applied to two RNA hairpin structures. The current set of 13C-direct detected experiments allows direct and unambiguous assignment of the majority of the hetero nuclei and the identification of the individual ribose moieties following their sequential assignment. Thus, 13C-direct detected NMR methods constitute useful complements to the conventional 1H-detected approach for the resonance assignment of oligonucleotides that is often hindered by the limited chemical shift dispersion. The developed methods can also be applied to large deuterated RNAs

    Methods of probing the interactions between small molecules and disordered proteins

    Get PDF
    It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.Gabriella T. Heller is supported by the Gates Cambridge Trust Scholarship. Francesco A. Aprile is supported by a Senior Research Fellowship award from the Alzheimer’s Society, UK (grant number 317, AS-SF-16-003)

    Methods of probing the interactions between small molecules and disordered proteins

    Get PDF

    Probing the interaction of Cisplatin with the human copper chaperone atox1 by solution and in-cell NMR spectroscopy.

    No full text
    Among anticancer therapeutics, platinum-based drugs have a prominent role. They carry out their antitumor activity by forming stable adducts with DNA, thus interfering with replication and transcription processes. Cellular uptake of these drugs is tightly connected to copper transport. The major Cu(I) influx transporter Ctr1 has been found to mediate transport of cisplatin and its analogues. Evidence also suggests that ATP7A and ATP7B mediate cisplatin sequestration and efflux from cells, thus influencing drug resistance. The copper-chaperone Atox1, which normally binds Cu(I) via two cysteines and delivers the metal to ATP7A/B, has also been reported to interact with cisplatin in in vitro experiments. In the present investigation we apply a combined approach, using solution and in-cell NMR spectroscopy methods, to probe intracellular drug delivery and interaction of cisplatin with Atox1. The intracellular environment provides itself the suitable conditions for the preservation of the protein in its active form. Initially a {Pt(NH3)2}-Atox1 adduct is formed. At longer reaction time we observed protein dimerization and loss of the ammines. Such a process is reminiscent of the copper-promoted formation of Atox1 dimers which have been proposed to be able to cross the nuclear membrane and act as a transcription factor. We also show that overexpression of Atox1 in E. coli reduces the amount of DNA platination and, consequently, the degree of cell filamentation
    corecore