5 research outputs found
A review of African horse sickness and its implications for Ireland
African horse sickness is an economically highly important non-contagious but infectious Orbivirus disease that is transmitted by various species of Culicoides midges. The equids most severely affected by the virus are horses, ponies, and European donkeys; mules are somewhat less susceptible, and African donkeys and zebra are refractory to the devastating consequences of infection. In recent years, Bluetongue virus, an Orbivirus similar to African horse sickness, which also utilises Culicoides spp. as its vector, has drastically increased its range into previously unaffected regions in northern Europe, utilising indigenous vector species, and causing widespread economic damage to the agricultural sector. Considering these events, the current review outlines the history of African horse sickness, including information concerning virus structure, transmission, viraemia, overwintering ability, and the potential implications that an outbreak would have for Ireland. While the current risk for the introduction of African horse sickness to Ireland is considered at worst ‘very low’, it is important to note that prior to the 2006 outbreak of Bluetongue in northern Europe, both diseases were considered to be of equal risk to the United Kingdom (‘medium-risk’). It is therefore likely that any outbreak of this disease would have serious socio-economic consequences for Ireland due to the high density of vulnerable equids and the prevalence of Culicoides species, potentially capable of vectoring the virus
Detection of novel papillomavirus in pigmented plaques of four pugs
Pugs are predisposed to the development of deeply pigmented, slightly elevated hyperkeratotic noncancerous plaques. Polymerase chain reaction amplification of a papillomavirus (PV)-like DNA fragment from such lesions suggested that PV may be responsible for them, although the predicted virus has not yet been identified. The goal of the present study was to make use of pigmented plaques from four pugs to identify and sequence the predicted virus. Taking advantage of the circular nature of PV DNA, the entire viral genome was amplified by rolling circle amplification and restriction enzyme analysis disclosed the same pattern in all four cases. Sequencing of one of the amplificates revealed a novel canine PV, termed CPV4, related to the recently described CPV3 but clearly distinct from canine oral PV and CPV2. Thus, a novel canine PV and a method for its future diagnosis are described