9 research outputs found

    Galactose Epimerase Deficiency: Expanding the Phenotype

    Get PDF
    Galactose epimerase deficiency is an inborn error of metabolism due to uridine diphosphate-galactose-4'-epimerase (GALE) deficiency. We report the clinical presentation, genetic and biochemical studies in two siblings with generalized GALE deficiency.Patient 1: The first child was born with a dysmorphic syndrome. Failure to thrive was noticed during the first year. Episodes of heart failure due to dilated cardiomyopathy, followed by liver failure, occurred between 12 and 42 months. The finding of a serum transferrin isoelectrofocusing (IEF) type 1 pattern led to the suspicion of a congenital disorder of glycosylation (CDG). Follow-up disclosed psychomotor disability, deafness, and nuclear cataracts.Patient 2: The sibling of patient 1 was born with short limbs and hip dysplasia. She is deceased in the neonatal period due to intraventricular hemorrhage in the context of liver failure. Investigation disclosed galactosuria and normal transferrin glycosylation.Next-generation sequence panel analysis for CDG syndrome revealed the previously reported c.280G>A (p.[V94M]) homozygous mutation in the GALE gene. Enzymatic studies in erythrocytes (patient 1) and fibroblasts (patients 1 and 2) revealed markedly reduced GALE activity confirming generalized GALE deficiency. This report describes the fourth family with generalized GALE deficiency, expanding the clinical spectrum of this disorder, since major cardiac involvement has not been reported before.info:eu-repo/semantics/publishedVersio

    X-LINKED LIVER GLYCOGENOSIS:LOCALIZATION AND ISOLATION OF A CANDIDATE GENE

    No full text
    X-linked phosphorylase kinase (PHK) deficiency causes X-linked liver glycogenosis (XLG) which is the most frequent fiver glycogen storage disorder in man. Recently we assigned XLG to the Xp22 chromosomal region by linkage analysis in two families segregating XLG. In this study a further localization of XLG in Xp22 was performed by extending the number of Xp22 markers, by extension of the number of family members from the two families of our previous study and by linkage analysis in four additional XLG families. Two-point linkage analysis revealed lod scores of 4.60, 5.73, 5.28, 8.62 and 5.14 for linkage between XLG and the DNA markers pXUT23 and pSE3.2-L(DXS16), pD2(DXS43), pTS247(DXS197) and pPA4B(DXS207), respectively, atl at 0% recombination. Linkage heterogeneity was not observed in this set of families. Multipoint linkage analysis increased the lod score for linkage between XLG and Xp22 to 16.79 relative to DXS197/DXS207. The position of the XLG gene was confirmed by analysis of recombinational events locating the XLG gene between DXS85 and DXS41. The XLG gene could not be mapped more precisely in this chromosomal region of approximately 20cM because of the absence of recombinational events between the XLG gene and the Xp22 markers. As we have previously shown that the rabbit liver alpha subunit of PHK (PHKA2) hybridizes to human Xp22, we isolated a human PHKA2 cDNA from a human hepatoma lambda gt11 cDNA library. Fluorescent in situ hybridization mapped human PHKA2 to Xp22. As this physical mapping coincidies with the genetic mapping of XLG by linkage analysis, PHKA2 most probably harbours the mutation(s) responsible for XLG

    Homocystinurie

    No full text
    corecore