6 research outputs found

    The power to detect artificial selection acting on single loci in recently domesticated species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An increasing number of aquaculture species are subjected to artificial selection in systematic breeding programs. Rapid improvements of important commercial traits are reported, but little is known about the effects of the strong directional selection applied, on gene level variation. Large numbers of genetic markers are becoming available, making it feasible to detect and estimate these effects. Here a simulation tool was developed in order to explore the power by which single genetic loci subjected to uni-directional selection in parallel breeding populations may be detected.</p> <p>Findings</p> <p>Two simulation models were pursued: 1) screening for loci displaying higher genetic differentiation than expected (high-F<sub>ST </sub>outliers), from neutral evolution between a pool of domesticated populations and a pool of wild populations; 2) screening for loci displaying lower genetic differentiation (low-F<sub>ST </sub>outliers) between domesticated strains than expected from neutral evolution. The premise for both approaches was that the isolated domesticated strains are subjected to the same breeding goals. The power to detect outlier loci was calculated under the following parameter values: number of populations, effective population size per population, number of generations since onset of selection, initial F<sub>ST</sub>, and the selection coefficient acting on the locus. Among the parameters investigated, selection coefficient, the number of generation since onset of selection, and number of populations, had the largest impact on power. The power to detect loci subjected to directional in breeding programmes was high when applying the between farmed and wild population approach, and low for the between farmed populations approach.</p> <p>Conclusions</p> <p>A simulation tool was developed for estimating the power to detect artificial selection acting directly on single loci. The simulation tool should be applicable to most species subject to domestication, as long as a reasonable high accuracy in input parameters such as effective population size, number of generations since the initiation of selection, and initial differentiation (F<sub>ST</sub>) can be obtained. Identification of genetic loci under artificial selection would be highly valuable, since such loci could be used to monitor maintenance of genetic variation in the breeding populations and monitoring possible genetic changes in wild populations from genetic interaction between escapees and their wild counterpart.</p

    Using proximity loggers to describe the sexual network of a freshwater fish

    No full text
    International audienceIndividual interactions are crucial to many ecological processes but are difficult to quantify for long periods in aquatic animals. In this study, we applied a digital proximity logging device recently developed for terrestrial animals to a freshwater fish, the brown trout (Salmo trutta L.). After preliminary calibration and quantification of detection errors, we recorded the interactions occurring between five male and four female brown trout in an artificial channel during one week of the spawning season. The 55,637 logs recorded allowed us to describe the encounter network and its fine scale evolution. In particular, the time spent with females varied a lot across males, from two to 24 h in a five-day period, and the males, which spent the most time with females tended to mate more. At the individual level, the temporal distribution of encounters reflected shifts in dominance status, with males sequentially taking over exclusive proximity with females before spawning. Beyond sexual encounters, the method presented here could be applied to many processes interesting to fish ecologists, such as predator-prey interactions, intra and interspecific competition or disease transmissio

    Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees

    No full text
    In some wild Atlantic salmon populations, rapid declines in numbers of wild returning adults has been associated with an increase in the prevalence of farmed salmon. Studies of phenotypic variation have shown that interbreeding between farmed and wild salmon may lead to loss of local adaptation. Yet, few studies have attempted to assess the impact of interbreeding at the genome level, especially among North American populations. Here, we document temporal changes in the genetic makeup of the severely threatened Magaguadavic River salmon population (Bay of Fundy, Canada), a population that might have been impacted by interbreeding with farmed salmon for nearly 20 years. Wild and farmed individuals caught entering the river from 1980 to 2005 were genotyped at 112 single-nucleotide polymorphisms (SNPs), and/or eight microsatellite loci, to scan for potential shifts in adaptive genetic variation. No significant temporal change in microsatellite-based estimates of allele richness or gene diversity was detected in the wild population, despite its precipitous decline in numbers over the last two decades. This might reflect the effect of introgression from farmed salmon, which was corroborated by temporal change in linkage-disequilibrium. Moreover, SNP genome scans identified a temporal decrease in candidate loci potentially under directional selection. Of particular interest was a SNP previously shown to be strongly associated with an important quantitative trait locus for parr mark number, which retained its genetic distinctiveness between farmed and wild fish longer than other outliers. Overall, these results indicate that farmed escapees have introgressed with wild Magaguadavic salmon resulting in significant alteration of the genetic integrity of the native population, including possible loss of adaptation to wild conditions
    corecore