12 research outputs found

    Human physiologically based pharmacokinetic model for ACE inhibitors: ramipril and ramiprilat

    Get PDF
    BACKGROUND: The angiotensin-converting enzyme (ACE) inhibitors have complicated and poorly characterized pharmacokinetics. There are two binding sites per ACE (high affinity "C", lower affinity "N") that have sub-nanomolar affinities and dissociation rates of hours. Most inhibitors are given orally in a prodrug form that is systemically converted to the active form. This paper describes the first human physiologically based pharmacokinetic (PBPK) model of this drug class. METHODS: The model was applied to the experimental data of van Griensven et. al for the pharmacokinetics of ramiprilat and its prodrug ramipril. It describes the time course of the inhibition of the N and C ACE sites in plasma and the different tissues. The model includes: 1) two independent ACE binding sites; 2) non-equilibrium time dependent binding; 3) liver and kidney ramipril intracellular uptake, conversion to ramiprilat and extrusion from the cell; 4) intestinal ramipril absorption. The experimental in vitro ramiprilat/ACE binding kinetics at 4°C and 300 mM NaCl were assumed for most of the PBPK calculations. The model was incorporated into the freely distributed PBPK program PKQuest. RESULTS: The PBPK model provides an accurate description of the individual variation of the plasma ramipril and ramiprilat and the ramiprilat renal clearance following IV ramiprilat and IV and oral ramipril. Summary of model features: Less than 2% of total body ACE is in plasma; 35% of the oral dose is absorbed; 75% of the ramipril metabolism is hepatic and 25% of this is converted to systemic ramiprilat; 100% of renal ramipril metabolism is converted to systemic ramiprilat. The inhibition was long lasting, with 80% of the C site and 33% of the N site inhibited 24 hours following a 2.5 mg oral ramipril dose. The plasma ACE inhibition determined by the standard assay is significantly less than the true in vivo inhibition because of assay dilution. CONCLUSION: If the in vitro plasma binding kinetics of the ACE inhibitor for the two binding sites are known, a unique PBPK model description of the Griensven et. al. experimental data can be obtained

    Exposure-response relationships and drug interactions of sirolimus

    No full text
    Sirolimus (rapamycin, RAPAMUNE, RAPA) is an immunosuppressive agent used for the prophylaxis of renal allograft rejection and exhibits an immunosuppressive mechanism that is distinct from that for cyclosporine and tacrolimus. The purpose of this manuscript is to discuss the exposure-response relationships and drug interactiosn of sirolimus. The various factors affecting sirolimus whole blood exposure included first-pass extraction, formulation, food, demographics, liver disease, assay method, and interacting drugs. Clinically significant effects caused by food, pediatric age, hepatic impairment, and interacting drugs require recommendations for the safe and efficacious use of sirolimus in renal allograft patients. An exposure-response model based on multivariate logistic regression was developed using the interstudy data from 1832 renal allograft patients. The analysis revealed an increased probability of acute rejection for sirolimus troughs <5 ng/mL, cyclosporine troughs <150 ng/mL, human leukocyte antigen (HLA) mismatches ≄4, and females. The outcomes suggested that individualization of sirolimus doses immediately after transplantation, based on HLA mismatch and sex, would likely decrease the probability of acute rejections in renal allograft recipients who receive concomitant sirolimus, cyclosporine (full-dose), and corticosteroid therapy. Sirolimus is a substrate for both Cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp) and undergoes extensive first-pass extraction. Drugs that are known to inhibit or induce these proteins may potentially affect sirolimus whole blood exposure. In healthy volunteers, cyclosporine, diltiazem, erythromycin, ketoconazole, and verapamil significantly increased sirolimus whole blood exposure, and rifampin significantly decreased sirolimus exposure. However, sirolimus whole blood exposure was not affected by acyclovir, atorvastatin, digoxin, ethinyl estradiol/norgestrel, glyburide, nifedipine, or tacrolimus. Among the 15 drugs studied, sirolimus significantly increased the exposures of only erythromycin and S-(−)verapamil

    Renal handling of drugs and xenobiotics

    No full text

    The Role of P-Glycoprotein at the Blood–Brain Barrier in Neurological and Psychiatric Disease

    No full text
    corecore