7 research outputs found

    Inhibitory Effect of TNF-α on Malaria Pre-Erythrocytic Stage Development: Influence of Host Hepatocyte/Parasite Combinations

    Get PDF
    BACKGROUND: The liver stages of malaria parasites are inhibited by cytokines such as interferon-gamma or Interleukin (IL)-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO) and radical oxygen intermediates (ROI), which kill hepatic parasites. However, conflicting results were obtained with TNF-alpha possibly because of differences in the models used. We have reassessed the role of TNF-alpha in the different cellular systems used to study the Plasmodium pre-erythrocytic stages. METHODS AND FINDINGS: Human or mouse TNF-alpha were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-alpha treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-alpha inhibition was mediated by a soluble factor present in the supernatant of TNF-alpha stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. CONCLUSIONS: Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection

    Challenges for vaccination in the elderly

    No full text
    <p>Abstract</p> <p>The increased susceptibility of the elderly to infection presents a major challenge to public health services. An aging immune system is well documented as the cause of increased infection rates in elderly people. Such immunosenescence is multi-factorial and incompletely understood. Immunosenescent changes include malfunctioning of innate immune system cellular receptors; involution of the thymus, with consequent reduction of the naïve T cell population; alteration of the T cell population composition; modified phenotypes of individual T cells; and replicative senescence of memory cells expressing naïve markers. Unfortunately, immunosenescence also renders vaccination less effective in the elderly. It is therefore important that the vaccines used against common but preventable diseases, such as influenza, are specifically enhanced to overcome the reduced immune responsiveness of this vulnerable population.</p

    Bunyaviridae

    No full text
    corecore