18 research outputs found

    Not Available

    No full text
    Not AvailableThis study aimed to investigate the chemokine CCL20, a macrophage inflammatory protein-3 alpha, for adjuvant potential in inactivated foot-and-mouth disease (FMD) vaccine. Groups of mice were injected intramuscularly with either murine CCL20 DNA or CCL20 protein two days ahead of the immunization with Montanide ISA206 adjuvanted inactivated FMD vaccine and humoral and cellular immune responses were measured in post-vaccinal sera. We demonstrated that the mice immunized with CCL20 plasmid plus FMD vaccine showed earlier and significantly (p < 0.05) higher neutralizing antibody responses compared to the mice vaccinated with CCL20 protein plus FMD vaccine. In fact, CCL20 as a protein did not show any adjuvant effect and the immune responses induced in this group were comparable to that of the mice vaccinated with FMD vaccine alone. All the vaccination groups showed serum IgG1 and IgG2 antibody responses; however, the mice vaccinated with CCL20 plasmid plus FMD vaccine showed significantly (p < 0.05) higher IgG1 and IgG2 responses and the responses remained high at all-time points post vaccination, although not always statistically significant. Upon restimulation of the vaccinated splenocytes with the inactivated FMD viral antigen, significantly (p < 0.05) higher IFN-γ and IL-2 levels in culture supernatants were found in animals vaccinated with the CCL20 plasmid plus FMD vaccine, which is indicative of the TH1 type of cellular immunity. On challenge with the homologous FMD virus on 28th day post immunization, CCL20 plasmid plus FMD vaccine showed complete protection (100%) while animals immunized with CCL20 protein plus FMD vaccine or FMD vaccine alone showed 66% protection. In summary, we show that prior injection of CCL20 plasmid improved protective efficacy of the inactivated FMD vaccine and thus offers a valuable strategy to modulate the efficacy and polarization of specific immunity against inactivated vaccines.Not Availabl

    Bacterial Ghosts of Escherichia coli Drive Efficient Maturation of Bovine Monocyte-Derived Dendritic Cells.

    No full text
    Bacterial ghosts (BGs) are empty cell envelopes derived from Gram-negative bacteria. They not only represent a potential platform for development of novel vaccines but also provide a tool for efficient adjuvant and antigen delivery system. In the present study, we investigated the interaction between BGs of Escherichia coli (E. coli) and bovine monocyte-derived dendritic cells (MoDCs). MoDCs are highly potent antigen-presenting cells and have the potential to act as a powerful tool for manipulating the immune system. We generated bovine MoDCs in vitro from blood monocytes using E. coli expressed bovine GM-CSF and IL-4 cytokines. These MoDCs displayed typical morphology and functions similar to DCs. We further investigated the E. coli BGs to induce maturation of bovine MoDCs in comparison to E. coli lipopolysaccharide (LPS). We observed the maturation marker molecules such as MHC-II, CD80 and CD86 were induced early and at higher levels in BG stimulated MoDCs as compared to the LPS stimulated MoDCs. BG mediated stimulation induced significantly higher levels of cytokine expression in bovine MoDCs than LPS. Both pro-inflammatory (IL-12 and TNF-α) and anti-inflammatory (IL-10) cytokines were induced in MoDCs after BGs stimulation. We further analysed the effects of BGs on the bovine MoDCs in an allogenic mixed lymphocyte reaction (MLR). We found the BG-treated bovine MoDCs had significantly (p<0.05) higher capacity to stimulate allogenic T cell proliferation in MLR as compared to the LPS. Taken together, these findings demonstrate the E. coli BGs induce a strong activation and maturation of bovine MoDCs

    Co-administration of flagellin augments immune responses to inactivated foot-and-mouth disease virus (FMDV) antigen.

    No full text
    Foot-and-mouth disease virus (FMDV) is one of the most contagious animal virus known that affects livestock health and production. This study aimed to investigate the effect of flagellin, a toll-like receptor 5 agonist, on the immune responses to inactivated FMDV antigen in guinea pig model. Our results showed that the co-administration of flagellin with FMDV antigen through intradermal route induces earlier and higher anti-FMDV neutralizing antibody responses as compared to FMDV antigen alone. Both IgG1 and IgG2 antibody-isotype responses were enhanced, but the IgG1/IgG2 ratios were relatively low, indicative of TH1 type of immune activation. On live viral challenge, flagellin+FMDV immunized guinea pigs showed 70% (7 out of 10) protection rate as compared to 40% (4 out of 10) in FMDV alone immunized guinea pigs. The results demonstrate that the co-administration of flagellin augments immune responses (preferably TH1 type) and protective efficacy against FMDV in guinea pigs

    An effective mannosylated chitosan nanoparticle DNA vaccine for FMD virus.

    No full text
    An effective mannosylated chitosan nanoparticle DNA vaccine for FMD viru

    Expression, purification, and functional characterisation of flagellin, a TLR5-ligand.

    No full text
    Flagellin, a Toll-like receptor 5 (TLR5)-ligand, is known for its activities like adjuvant, induction of pro-inflammatory cytokines and innate immunity. In this context, fliC gene of Salmonella Typhimurium was cloned into pET32a expression plasmid using in-house designed gene specific primers. The frame and orientation of the inserted fliC gene was confirmed upon colony PCR, restriction enzyme analysis and sequencing. Sequence analysis of fliC revealed proper orientation of the gene and had 1,485 nucleotides. Following transformation of pET-fliC plasmid into Escherichia coli BL21 (DE3) cells, the gene was expressed after inducing with IPTG (Isopropylβ-D-1-thiogalactopyranoside). The polyHis-tag-fliC was ~70kDa as confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The identity/authenticity of the recombinant-fliC was confirmed by its specific reactivity with commercial anti-fliC MAb of S. Typhimurium. Further, the antigenic and functional properties of recombinant-fliC were determined espousing its ability to induce antigen specific antibodies in G pigs and increased m-RNA expression of certain pro-inflammatory mediators like TNF-α and GM-CSF in vitro

    Immunological evaluation of mannosylated chitosan nanoparticles based foot and mouth disease virus DNA vaccine, pVAC FMDV VP1-OmpA in guinea pigs.

    No full text
    A DNA vaccine for foot and mouth disease (FMD) based on mannosylated chitosan nanoparticles was evaluated in guinea pigs. The DNA construct was comprised of FMD virus full length-VP1 gene and outer membrane protein A (Omp A) gene of Salmonella typhimurium as a Toll-like receptor (TLR)-ligand in pVAC vector. Groups of guinea pigs immunized either intramuscularly or intra-nasally were evaluated for induction of virus neutralizing antibodies, Th1(IgG2) and Th2 (IgG1) responses, lymphocyte proliferation, reactive nitrogen intermediate production, secretory IgA for naso-mucosal immune response and protection upon homotypic type O virulent FMD virus challenge. The results indicate the synergistic effect of OmpA on the immunogenic potential of FMD DNA vaccine construct delivered using mannosylated chitosan nano-particles by different routes of administration. These observations suggest the substantial improvement in all the immunological parameters with enhanced protection in guinea pigs
    corecore