383 research outputs found

    Exchange coupling in CaMnO3_3 and LaMnO3_3: configuration interaction and the coupling mechanism

    Full text link
    The equilibrium structure and exchange constants of CaMnO3_3 and LaMnO3_3 have been investigated using total energy unrestricted Hartree-Fock (UHF) and localised orbital configuration interaction (CI) calculations on the bulk compounds and Mn2_2O1114_{11}^{14-} and Mn2_2O1116_{11}^{16-} clusters. The predicted structure and exchange constants for CaMnO3_3 are in reasonable agreement with estimates based on its N\'eel temperature. A series of calculations on LaMnO3_3 in the cubic perovskite structure shows that a Hamiltonian with independent orbital ordering and exchange terms accounts for the total energies of cubic LaMnO3_3 with various spin and orbital orderings. Computed exchange constants depend on orbital ordering. UHF calculations tend to underestimate exchange constants in LaMnO3_3, but have the correct sign when compared with values obtained by neutron scattering; exchange constants obtained from CI calculations are in good agreement with neutron scattering data provided the Madelung potential of the cluster is appropriate. Cluster CI calculations reveal a strong dependence of exchange constants on Mn d eg_g orbital populations in both compounds. CI wave functions are analysed in order to determine which exchange processes are important in exchange coupling in CaMnO3_3 and LaMnO3_3.Comment: 25 pages and 9 postscript figure

    Patterning the second-order optical nonlinearity of asymmetric quantum wells by ion implantation enhanced intermixing

    Get PDF
    The change in the second-order nonlinear susceptibility of an asymmetric quantum well (AQW) superlattice induced by ion beam-enhanced intermixing has been measured. The surface-emitted second-harmonic intensities radiated from implanted and masked areas of an AQW waveguide were measured and compared for incident wavelengths between = 1480 and 1600 nm. Intermixing resulted in a 60 meV blueshift of the AQW band edge and a uniform suppression of the AQW second-order susceptibility, while the masked AQWs were unchanged

    Amorphization Threshold in Si-Implanted Strained Sige Alloy Layers

    Get PDF
    The authors have examined the damage produced by Si-ion implantation into strained Si{sub 1{minus}x}Ge{sub x} epilayers. Damage accumulation in the implanted layers was monitored in situ by time-resolved reflectivity and measured by ion channeling techniques to determine the amorphization threshold in strained Si{sub 1{minus}x}Ge{sub x} (x = 0.16 and 0.29) over the temperature range 30--110 C. The results are compared with previously reported measurements on unstrained Si{sub 1{minus}x}Ge{sub x}, and with the simple model used to describe those results. They report here data which lend support to this model and which indicate that pre-existing strain does not enhance damage accumulation in the alloy layer

    Ballistic electron transport in stubbed quantum waveguides: experiment and theory

    Full text link
    We present results of experimental and theoretical investigations of electron transport through stub-shaped waveguides or electron stub tuners (ESTs) in the ballistic regime. Measurements of the conductance G as a function of voltages, applied to different gates V_i (i=bottom, top, and side) of the device, show oscillations in the region of the first quantized plateau which we attribute to reflection resonances. The oscillations are rather regular and almost periodic when the height h of the EST cavity is small compared to its width. When h is increased, the oscillations become less regular and broad depressions in G appear. A theoretical analysis, which accounts for the electrostatic potential formed by the gates in the cavity region, and a numerical computation of the transmission probabilities successfully explains the experimental observations. An important finding for real devices, defined by surface Schottky gates, is that the resonance nima result from size quantization along the transport direction of the EST.Comment: Text 20 pages in Latex/Revtex format, 11 Postscript figures. Phys. Rev. B,in pres

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    Automated final lesion segmentation in posterior circulation acute ischemic stroke using deep learning

    Get PDF
    Final lesion volume (FLV) is a surrogate outcome measure in anterior circulation stroke (ACS). In posterior circulation stroke (PCS), this relation is plausibly understudied due to a lack of methods that automatically quantify FLV. The applicability of deep learning approaches to PCS is limited due to its lower incidence compared to ACS. We evaluated strategies to develop a convolutional neural network (CNN) for PCS lesion segmentation by using image data from both ACS and PCS patients. We included follow-up non-contrast computed tomography scans of 1018 patients with ACS and 107 patients with PCS. To assess whether an ACS lesion segmentation generalizes to PCS, a CNN was trained on ACS data (ACS-CNN). Second, to evaluate the performance of only including PCS patients, a CNN was trained on PCS data. Third, to evaluate the performance when combining the datasets, a CNN was trained on both datasets. Finally, to evaluate the performance of transfer learning, the ACS-CNN was fine-tuned using PCS patients. The transfer learning strategy outperformed the other strategies in volume agreement with an intra-class correlation of 0.88 (95% CI: 0.83–0.92) vs. 0.55 to 0.83 and a lesion detection rate of 87% vs. 41–77 for the other strategies. Hence, transfer learning improved the FLV quantification and detection rate of PCS lesions compared to the other strategies

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore