35 research outputs found

    Plane waves with negative phase velocity in Faraday chiral mediums

    Full text link
    The propagation of plane waves in a Faraday chiral medium is investigated. Conditions for the phase velocity to be directed opposite to the direction of power flow are derived for propagation in an arbitrary direction; simplified conditions which apply to propagation parallel to the distinguished axis are also established. These negative phase-velocity conditions are explored numerically using a representative Faraday chiral medium, arising from the homogenization of an isotropic chiral medium and a magnetically biased ferrite. It is demonstrated that the phase velocity may be directed opposite to power flow, provided that the gyrotropic parameter of the ferrite component medium is sufficiently large compared with the corresponding nongyrotropic permeability parameters.Comment: accepted for publication in Phys. Rev.

    Strong spatial dispersion in wire media in the very large wavelength limit

    Get PDF
    It is found that there exist composite media that exhibit strong spatial dispersion even in the very large wavelength limit. This follows from the study of lattices of ideally conducting parallel thin wires (wire media). In fact, our analysis reveals that the description of this medium by means of a local dispersive uniaxial dielectric tensor is not complete, leading to unphysical results for the propagation of electromagnetic waves at any frequencies. Since non--local constitutive relations have been usually considered in the past as a second order approximation, meaningful in the short wavelength limit, the aforementioned result presents a relevant theoretical interest. In addition, since such wire media have been recently used as a constituent of some discrete artificial media (or metamaterials), the reported results open the question of the relevance of the spatial dispersion in the characterization of these artificial media.Comment: MiKTex, 4 pages with 2 figures, submitted to PR

    Ideal boundary and generalised soft and hard conditions

    No full text

    Green dyadic and dipole fields for a medium with anisotropic chirality

    No full text

    Electrostatic image method for the anisotropic half space

    No full text

    Realization of the PEMC boundary

    No full text
    corecore