8 research outputs found

    Theory of Ferromagnetism in Diluted Magnetic Semiconductor Quantum Wells

    Full text link
    We present a mean field theory of ferromagnetism in diluted magnetic semiconductor quantum wells. When subband mixing due to exchange interactions between quantum well free carriers and magnetic impurities is neglected, analytic result can be obtained for the dependence of the critical temperature and the spontaneous magnetization on the distribution of magnetic impurities and the quantum well width. The validity of this approximate theory has been tested by comparing its predictions with those from numerical self-consistent field calculations. Interactions among free carriers, accounted for using the local-spin-density approximation, substantially enhance the critical temperature. We demonstrate that an external bias potential can tune the critical temperature through a wide range.Comment: 4 pages, 3 figures, submitted to Phys. Rev.

    Fermionic SK-models with Hubbard interaction: Magnetism and electronic structure

    Full text link
    Models with range-free frustrated Ising spin- and Hubbard interaction are treated exactly by means of the discrete time slicing method. Critical and tricritical points, correlations, and the fermion propagator, are derived as a function of temperature T, chemical potential \mu, Hubbard coupling U, and spin glass energy J. The phase diagram is obtained. Replica symmetry breaking (RSB)-effects are evaluated up to four-step order (4RSB). The use of exact relations together with the 4RSB-solutions allow to model exact solutions by interpolation. For T=0, our numerical results provide strong evidence that the exact density of states in the spin glass pseudogap regime obeys \rho(E)=const |E-E_F| for energies close to the Fermi level. Rapid convergence of \rho'(E_F) under increasing order of RSB is observed. The leading term resembles the Efros-Shklovskii Coulomb pseudogap of localized disordered fermionic systems in 2D. Beyond half filling we obtain a quadratic dependence of the fermion filling factor on the chemical potential. We find a half filling transition between a phase for U>\mu, where the Fermi level lies inside the Hubbard gap, into a phase where \mu(>U) is located at the center of the upper spin glass pseudogap (SG-gap). For \mu>U the Hubbard gap combines with the lower one of two SG-gaps (phase I), while for \mu<U it joins the sole SG-gap of the half-filling regime (phase II). We predict scaling behaviour at the continuous half filling transition. Implications of the half-filling transition between the deeper insulating phase II and phase I for delocalization due to hopping processes in itinerant model extensions are discussed and metal-insulator transition scenarios described.Comment: 29 pages, 26 Figures, 4 jpeg- and 3 gif-Fig-files include

    Polarization Induced Effects in GaN-based Heterostructures and Novel Sensors

    No full text
    corecore