3 research outputs found

    Drying kinetics of deformable and cracking nano-porous gels

    No full text
    The desiccation of porous materials encompasses a wide range of technological and industrial processes and is acutely sensitive to the hierarchical structure of the porous materials resulting in complex dynamics which are challenging to unravel. Macroscopic observations of the surface and geometry of model colloidal gels during desiccation under controlled air flow highlight the role of crack formation in drying. The density of cracks and their rate of appearance depend on the initial solid fraction of the gels and their adherence to the substrate. While under certain conditions cracking leads to an increase of the drying rate, in other cases cracking allows for its conservation over an extended period of the drying process. Nevertheless, as long as the sample is saturated with water, each piece within the sample shrinks isotropically as if it were an independent drying system. By simulating the airflow around the sample and inside the crack cavities, we show the existence of a perturbation in the air velocity in the vicinity of the crack cavity whose scale depends on the aspect ratio (depth/width) of the latter. On this basis, we propose a simple model which predicts the observed drying rate variations encountered while the sample cracks; and further enables to simulate the desiccation for a designated crack density
    corecore