4 research outputs found

    Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes

    Full text link
    The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in "Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in Nonlinear Systems

    Solitary waves for linearly coupled nonlinear Schrodinger equations with inhomogeneous coefficients

    Full text link
    Motivated by the study of matter waves in Bose-Einstein condensates and coupled nonlinear optical systems, we study a system of two coupled nonlinear Schrodinger equations with inhomogeneous parameters, including a linear coupling. For that system we prove the existence of two different kinds of homoclinic solutions to the origin describing solitary waves of physical relevance. We use a Krasnoselskii fixed point theorem together with a suitable compactness criterion.Comment: 16 page

    Conditions and stability analysis for saddle–node bifurcations of solitary waves in generalized nonlinear Schrödinger equations

    No full text
    Saddle-node bifurcations of solitary waves in generalized nonlinear Schrödinger equations with arbitrary forms of nonlinearity and external potentials in arbitrary spatial dimensions are analyzed. First, general conditions for these bifurcations are derived. Second, it is shown analytically that the linear stability of these solitary waves does not switch at saddle-node bifurcations, which is in stark contrast with finite-dimensional dynamical systems where stability switching takes place. Third, it is shown that this absence of stability switching does not contradict the Vakhitov–Kolokolov stability criterion or the results in finite-dimensional dynamical systems. Fourth, it is shown that this absence of stability switching holds not only for real potentials but also for complex potentials. Lastly, various numerical examples will be given to confirm these analytical findings. In particular, saddle-node bifurcations with both branches of solitary waves being stable will be presented.
    corecore