81 research outputs found

    Bispectral KP Solutions and Linearization of Calogero-Moser Particle Systems

    Full text link
    A new construction using finite dimensional dual grassmannians is developed to study rational and soliton solutions of the KP hierarchy. In the rational case, properties of the tau function which are equivalent to bispectrality of the associated wave function are identified. In particular, it is shown that there exists a bound on the degree of all time variables in tau if and only if the wave function is rank one and bispectral. The action of the bispectral involution, beta, in the generic rational case is determined explicitly in terms of dual grassmannian parameters. Using the correspondence between rational solutions and particle systems, it is demonstrated that beta is a linearizing map of the Calogero-Moser particle system and is essentially the map sigma introduced by Airault, McKean and Moser in 1977.Comment: LaTeX, 24 page

    An hbar-expansion of the Toda hierarchy: a recursive construction of solutions

    Full text link
    A construction of general solutions of the \hbar-dependent Toda hierarchy is presented. The construction is based on a Riemann-Hilbert problem for the pairs (L,M) and (\bar L,\bar M) of Lax and Orlov-Schulman operators. This Riemann-Hilbert problem is translated to the language of the dressing operators W and \bar W. The dressing operators are set in an exponential form as W = e^{X/\hbar} and \bar W = e^{\phi/\hbar}e^{\bar X/\hbar}, and the auxiliary operators X,\bar X and the function \phi are assumed to have \hbar-expansions X = X_0 + \hbar X_1 + ..., \bar X = \bar X_0 + \hbar\bar X_1 + ... and \phi = \phi_0 + \hbar\phi_1 + .... The coefficients of these expansions turn out to satisfy a set of recursion relations. X,\bar X and \phi are recursively determined by these relations. Moreover, the associated wave functions are shown to have the WKB form \Psi = e^{S/\hbar} and \bar\Psi = e^{\bar S/\hbar}, which leads to an \hbar-expansion of the logarithm of the tau function.Comment: 37 pages, no figures. arXiv admin note: substantial text overlap with arXiv:0912.486

    A Symplectic Structure for String Theory on Integrable Backgrounds

    Get PDF
    We define regularised Poisson brackets for the monodromy matrix of classical string theory on R x S^3. The ambiguities associated with Non-Ultra Locality are resolved using the symmetrisation prescription of Maillet. The resulting brackets lead to an infinite tower of Poisson-commuting conserved charges as expected in an integrable system. The brackets are also used to obtain the correct symplectic structure on the moduli space of finite-gap solutions and to define the corresponding action-angle variables. The canonically-normalised action variables are the filling fractions associated with each cut in the finite-gap construction. Our results are relevant for the leading-order semiclassical quantisation of string theory on AdS_5 x S^5 and lead to integer-valued filling fractions in this context.Comment: 41 pages, 2 figures; added references, corrected typos, improved discussion of Hamiltonian constraint

    Lam\'e polynomials, hyperelliptic reductions and Lam\'e band structure

    Full text link
    The band structure of the Lam\'e equation, viewed as a one-dimensional Schr\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lam\'e equation parameters take complex values, are investigated. If the Lam\'e equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lam\'e polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.Comment: 38 pages, 1 figure; final revision

    Solitons in high-energy QCD

    Get PDF
    We study the asymptotic solutions of the Schr\"odinger equation for the color-singlet reggeon compound states in multi-color QCD. We show that in the leading order of asymptotic expansion, quasiclassical reggeon trajectories have a form of the soliton waves propagating on the 2-dimensional plane of transverse coordinates. Applying methods of the finite-gap theory we construct their explicit form in terms of Riemann theta-functions and examine their properties.Comment: 26 pages, Latex style, 3 figures embedded with epsf.st

    Generic solutions for some integrable lattice equations

    Full text link
    We derive the expressions for ψ\psi-functions and generic solutions of lattice principal chiral equations, lattice KP hierarchy and hierarchy including lattice N-wave type equations. τ\tau-function of nn free fermions plays fundamental role in this context. Miwa's coordinates in our case appear as the lattice parameters.Comment: The text of the talk at NEEDS-93 conference, Gallipoli, Italy, September-93, LaTeX, 8 pages. Several typos and minor errors are correcte

    Global Geometric Deformations of the Virasoro algebra, current and affine algebras by Krichever-Novikov type algebra

    Full text link
    In two earlier articles we constructed algebraic-geometric families of genus one (i.e. elliptic) Lie algebras of Krichever-Novikov type. The considered algebras are vector fields, current and affine Lie algebras. These families deform the Witt algebra, the Virasoro algebra, the classical current, and the affine Kac-Moody Lie algebras respectively. The constructed families are not equivalent (not even locally) to the trivial families, despite the fact that the classical algebras are formally rigid. This effect is due to the fact that the algebras are infinite dimensional. In this article the results are reviewed and developed further. The constructions are induced by the geometric process of degenerating the elliptic curves to singular cubics. The algebras are of relevance in the global operator approach to the Wess-Zumino-Witten-Novikov models appearing in the quantization of Conformal Field Theory.Comment: 17 page

    Logarithmic deformations of the rational superpotential/Landau-Ginzburg construction of solutions of the WDVV equations

    Get PDF
    The superpotential in the Landau-Ginzburg construction of solutions to the Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations is modified to include logarithmic terms. This results in deformations - quadratic in the deformation parameters- of the normal prepotential solutions of the WDVV equations. Such solutions satisfy various pseudo-quasi-homogeneity conditions, on assigning a notional weight to the deformation parameters. These solutions originate in the so-called `water-bag' reductions of the dispersionless KP hierarchy. This construction includes, as a special case, deformations which are polynomial in the flat coordinates, resulting in a new class of polynomial solutions of the WDVV equations

    Extensions of superalgebras of Krichever-Novikov type

    Full text link
    An explicit construction of central extensions of Lie superalgebras of Krichever-Novikov type is given. In the case of Jordan superalgebras related to the superalgebras of Krichever-Novikov type we calculate a 1-cocycle with coefficients in the dual space

    Coisotropic deformations of associative algebras and dispersionless integrable hierarchies

    Full text link
    The paper is an inquiry of the algebraic foundations of the theory of dispersionless integrable hierarchies, like the dispersionless KP and modified KP hierarchies and the universal Whitham's hierarchy of genus zero. It stands out for the idea of interpreting these hierarchies as equations of coisotropic deformations for the structure constants of certain associative algebras. It discusses the link between the structure constants and the Hirota's tau function, and shows that the dispersionless Hirota's bilinear equations are, within this approach, a way of writing the associativity conditions for the structure constants in terms of the tau function. It also suggests a simple interpretation of the algebro-geometric construction of the universal Whitham's equations of genus zero due to Krichever.Comment: minor misprints correcte
    corecore