25 research outputs found

    Relations between M\"obius and coboundary polynomial

    Get PDF
    It is known that, in general, the coboundary polynomial and the M\"obius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will try to answer if it is possible that the M\"obius polynomial of a matroid, together with the M\"obius polynomial of the dual matroid, define the coboundary polynomial of the matroid. In some cases, the answer is affirmative, and we will give two constructions to determine the coboundary polynomial in these cases.Comment: 12 page

    Evaluation Codes from smooth Quadric Surfaces and Twisted Segre Varieties

    Full text link
    We give the parameters of any evaluation code on a smooth quadric surface. For hyperbolic quadrics the approach uses elementary results on product codes and the parameters of codes on elliptic quadrics are obtained by detecting a BCH structure of these codes and using the BCH bound. The elliptic quadric is a twist of the surface P^1 x P^1 and we detect a similar BCH structure on twists of the Segre embedding of a product of any d copies of the projective line.Comment: 10 pages. Presented at the conference Workshop on Coding theory and Cryptography 201

    On the Use of the Negation Map in the Pollard Rho Method

    Get PDF
    The negation map can be used to speed up the Pollard rho method to compute discrete logarithms in groups of elliptic curves over finite fields. It is well known that the random walks used by Pollard rho when combined with the negation map get trapped in fruitless cycles. We show that previously published approaches to deal with this problem are plagued by recurring cycles, and we propose effective alternative countermeasures. As a result, fruitless cycles can be resolved, but the best speedup we managed to achieve is by a factor of only 1.29. Although this is less than the speedup factor of root 2 generally reported in the literature, it is supported by practical evidence

    Elliptic and Hyperelliptic Curves: A Practical Security Analysis

    Get PDF
    Motivated by the advantages of using elliptic curves for discrete logarithm-based public-key cryptography, there is an active research area investigating the potential of using hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known that the algorithm can be sped up when the target curve comes equipped with an efficiently computable automorphism. In this paper we incorporate all of the known optimizations (including those relating to the automorphism group) in order to perform a systematic security assessment of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework to give concrete estimates on the number of core years required to solve the discrete logarithm problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in genus 2. © 2014 Springer-Verlag Berlin Heidelberg

    On erasure decoding of AG-codes

    No full text

    On termination criteria for decoding algorithms

    No full text

    On termination criteria for decoding algorithms

    No full text

    Algebraic decoding using special divisors

    No full text
    The basic algorithm for decoding of algebraic-geometric codes corrects up to (dc-1)2-g/2 errors, where d c denotes the designed minimum distance of a code and g denotes the genus of a curve. The modified algorithm improves on this, but applies to a restricted class of codes. An extended modified algorithm that applies to all codes is formulated. It will correct up to (dc-1)/2-s errors, s is called the Clifford defect of a curve. For curves with g⩾1, this defect satisfies 0⩽s⩽(g-1)/2. The success of the algorithm depends highly on the curve that is used and the result is in the first place a theoretical result. To support the practical importance, two special cases are considered. All codes from hyperelliptic curves can be decoded up to the designed minimum distance. For plane curves that contain at least one rational point, it is shown that s⩽(g+1)/4

    Majority coset decoding

    No full text
    corecore