23 research outputs found

    Mass distributions for quasifission processes in superheavy compositesystems with Z=108-120

    No full text
    This paper presents the study of mass-energy distributions of quasifission fragments obtained in the reactions 36S, 48Ca, 64Ni+238U at energies below and above the Coulomb barrier. To describe the quasifission mass distribution the simple model has been proposed. This model is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions

    Mass distributions for quasifission processes in superheavy compositesystems with Z=108-120

    No full text
    This paper presents the study of mass-energy distributions of quasifission fragments obtained in the reactions 36S, 48Ca, 64Ni+238U at energies below and above the Coulomb barrier. To describe the quasifission mass distribution the simple model has been proposed. This model is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions

    Fusion-fission of superheavy compound nuclei produced in reactions with heavy ions beyond Ca

    No full text
    Total Kinetic Energy - Mass distributions of fission-like fragments for the reactions of 22Ne, 26Mg, 36S, 48Ca, 58Fe and 64Ni ions with actinides leading to the formation of superheavy compound systems with Z=108-120 at energies near the Coulomb barrier have been measured. Fusion-fission cross sections were estimated from the analysis of mass and total kinetic energy distributions. It was found that the fusion probability drops by three orders of magnitude for the formation of the compound nucleus with Z=120 obtained in the reaction 64Ni+238U compared to the formation of the compound nucleus with Z=112 obtained in the reaction 48Ca+238U at the excitation energy of the compound nucleus of about 45 MeV. From our analysis it turns out that the reaction 64Ni+238U is not suitable for the synthesis of element Z=120

    Evidence of quasifission in the 180Hg composite system formed in the 68Zn + 112Sn reaction

    No full text
    For the 68Zn + 112Sn reaction the Coulomb parameter Z1Z2 is equal to 1500 that is close to the threshold value for the appearance of quasifission process. It was found that mass-energy distributions of the reaction fragments differ significantly from those obtained in the 36Ar + 144Sm reaction leading to the formation of the same composite system of 180Hg at similar excitation energies of about 50 MeV. In the case of the reaction with 68Zn ions, the mass distribution of fissionlike fragments has a wide two-humped shape with maximum yields at 70 and 110 u for the light and heavy fragments, respectively, instead of 80 and 100 u observed in the fission of 180Hg formed in the 36Ar + 144Sm reaction. The difference is explained by an unexpectedly large contribution (more than 70%) of quasifission in the case of the 68Zn + 112Sn reaction.peerReviewe

    Mass distributions for quasifission processes in superheavy compositesystems with Z=108-120

    No full text
    This paper presents the study of mass-energy distributions of quasifission fragments obtained in the reactions 36S, 48Ca, 64Ni+238U at energies below and above the Coulomb barrier. To describe the quasifission mass distribution the simple model has been proposed. This model is based on the driving potential of the system and time dependent mass drift. This procedure allows to estimate QF time scale from the measured mass distributions
    corecore