22 research outputs found

    Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics

    Get PDF
    CdSe quantum dots functionalized with oligo-(phenylene vinylene) (OPV) ligands (CdSe-OPV nanostructures) represent a new class of composite nanomaterials with significantly modified photophysics relative to bulk blends or isolated components. Single-molecule spectroscopy on these species have revealed novel photophysics such as enhanced energy transfer, spectral stability, and strongly modified excited state lifetimes and blinking statistics. Here, we review the role of ligands in quantum dot applications and summarize some of our recent efforts probing energy and charge transfer in hybrid CdSe-OPV composite nanostructures

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis

    Three-dimensional solution-phase Förster resonance energy transfer analysis of nanomolar quantum dot bioconjugates with subnanometer resolution

    No full text
    Luminescent semiconductor quantum dots (QDs) play an important role in optical biosensing and, in particular, in FRET (Forster resonance energy transfer)-based luminescent probes. The QD materials that form the basis for these probes are in actuality quite heterogeneous and consist of different types of QDs with variations in material compositions, surface coatings, and available biofunctionalization strategies. To optimize their role in active sensors that rely on FRET, extensive physicochemical characterization is required. A technique that can provide precise information about size, shape, and bioconjugation properties of different QD-biomolecule conjugates from a single sample and measurement under actual experimental biosensing conditions would therefore be highly important for advancing QDs to a next generation nanobiosensing tool. Here, we present a detailed FRET study on a large set of QD-biomolecule conjugates, which allows for a homogeneous solution-phase size, shape, and bioconjugation analysis of peptide and protein self-assembled QDs at subnanomolar concentrations and with subnanometer resolution. Direct incorporation of luminescent Tb-complexes (Tb) in the peptides or proteins leads to Tb-to-QD FRET upon assembly to the different QD surfaces. Luminescence decay times and time-gated intensities, which precisely decode the FRET interactions, provide a wealth of useful information on the underlying composite structure and even biochemical functionality. In contrast to other high-resolution techniques, which require rather sophisticated instrumentation, well-defined experimental conditions, and low sample throughput, our technique uses a commercial time-resolved fluorescence plate reader for very fast and simple data acquisition of many aqueous samples in a standard microtiter plate
    corecore