6 research outputs found
Recommended from our members
The Ixodes scapularis salivary protein, Salp15, prevents the association of HIV-1 gp120 and CD4
Recommended from our members
Conformational rearrangement within the soluble domains of the CD4 receptor is ligand specific
Recommended from our members
The tick saliva protein, Salp15, contributes to Th17-induced pathology during Experimental Autoimmune Encephalomyelitis
Salp15 is a tick saliva protein that inhibits CD4(+) T cell differentiation through its interaction with CD4. The protein inhibits early signaling events during T cell activation and IL-2 production. Because murine experimental autoimmune encephalomyelitis development is mediated by central nervous system-infiltrating CD4(+) T cells that are specific for myelin-associated proteins, we sought to determine whether the treatment of mice with Salp15 during EAE induction would prevent the generation of proinflammatory T cell responses and the development of the disease. Surprisingly, Salp15-treated mice developed more severe EAE than control animals. The treatment of EAE-induced mice with the tick saliva protein did not result in increased infiltration of T cells to the central nervous system, indicating that Salp15 had not affected the permeability of the blood-brain barrier. Salp15 treatment did not affect the development of antibody responses against the eliciting peptide or the presence of IFNγ in the sera. The treatment with Salp15 resulted, however, in the increased differentiation of Th17 cells in vivo, as evidenced by higher IL-17 production from PLP(139-151)-specific CD4+ T cells isolated from the central nervous system and the periphery. In vitro, Salp15 was able to induce the differentiation of Th17 cells in the presence of IL-6 and the absence of TGFβ These results suggest that a conductive milieu for the differentiation of Th17 cells can be achieved by restriction of the production of IL-2 during T cell differentiation, a role that may be performed by TGFβ and other immunosuppressive agents
Cutting Edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15
Salp15 is an Ixodes scapularis salivary protein that inhibits CD4(+) T cell activation through the repression of TCR ligation-triggered calcium fluxes and IL-2 production. We show in this study that Salp15 binds specifically to the CD4 coreceptor on mammalian host T cells. Salp15 specifically associates through its C-terminal residues with the outermost two extracellular domains of CD4. Upon binding to CD4, Salp15 inhibits the subsequent TCR ligation-induced T cell signaling at the earliest steps including tyrosine phosphorylation of the Src kinase Lck, downstream effector proteins, and lipid raft reorganization. These results provide a molecular basis to understanding the immunosuppressive activity of Salp15 and its specificity for CD4(+) T cells