6 research outputs found
Mass loss by a scalar charge in an expanding universe
We study the phenomenon of mass loss by a scalar charge -- a point particle
that acts a source for a noninteracting scalar field -- in an expanding
universe. The charge is placed on comoving world lines of two cosmological
spacetimes: a de Sitter universe, and a spatially-flat, matter-dominated
universe. In both cases, we find that the particle's rest mass is not a
constant, but that it changes in response to the emission of monopole scalar
radiation by the particle. In de Sitter spacetime, the particle radiates all of
its mass within a finite proper time. In the matter-dominated cosmology, this
happens only if the charge of the particle is sufficiently large; for smaller
charges the particle first loses some of its mass, but then regains it all
eventually.Comment: 11 pages, RevTeX4, Accepted for Phys. Rev.
The use of exp(iS[x]) in the sum over histories
The use of as the generic form for a sum over histories in
configuration space is discussed critically and placed in its proper context.
The standard derivation of the sum over paths by discretizing the paths is
reviewed, and it is shown that the form is justified only
for Schrodinger-type systems which are at most second order in the momenta.
Extending this derivation to the relativistic free particle, the causal Green's
function is expressed as a sum over timelike paths, and the Feynman Green's
function is expressed both as a sum over paths which only go one way in time
and as a sum over paths which move forward and backward in time. The weighting
of the paths is shown not to be in any of these cases. The role
of the inner product and the operator ordering of the wave equation in defining
the sum over histories is discussed.Comment: 22 pages, Latex, Imperial-TP-92-93-4
Fate of the first traversible wormhole: black-hole collapse or inflationary expansion
We study numerically the stability of Morris & Thorne's first traversible
wormhole, shown previously by Ellis to be a solution for a massless ghost
Klein-Gordon field. Our code uses a dual-null formulation for spherically
symmetric space-time integration, and the numerical range covers both universes
connected by the wormhole. We observe that the wormhole is unstable against
Gaussian pulses in either exotic or normal massless Klein-Gordon fields. The
wormhole throat suffers a bifurcation of horizons and either explodes to form
an inflationary universe or collapses to a black hole, if the total input
energy is respectively negative or positive. As the perturbations become small
in total energy, there is evidence for critical solutions with a certain
black-hole mass or Hubble constant. The collapse time is related to the initial
energy with an apparently universal critical exponent. For normal matter, such
as a traveller traversing the wormhole, collapse to a black hole always
results. However, carefully balanced additional ghost radiation can maintain
the wormhole for a limited time. The black-hole formation from a traversible
wormhole confirms the recently proposed duality between them. The inflationary
case provides a mechanism for inflating, to macroscopic size, a Planck-sized
wormhole formed in space-time foam.Comment: 10 pages, RevTeX4, 11 figures, epsf.st
Quantum Formation of Black Hole and Wormhole in Gravitational Collapse of a Dust Shell
Quantum-mechanical model of self-gravitating dust shell is considered. To
clarify the relation between classical and quantum spacetime which the shell
collapse form, we consider various time slicing on which quantum mechanics is
developed. By considering the static time slicing which corresponds to an
observer at a constant circumference radius, we obtain the wave functions of
the shell motion and the discrete mass spectra which specify the global
structures of spherically symmetric spacetime formed by the shell collapse. It
is found that wormhole states are forbidden when the rest mass is comparable
with Plank mass scale due to the zero-point quantum fluctuations.Comment: 10 pages in twocolumn, 8 figures, RevTeX 3.
Brane Big-Bang Brought by Bulk Bubble
We propose an alternative inflationary universe scenario in the context of
Randall-Sundrum braneworld cosmology. In this new scenario the existence of
extra-dimension(s) plays an essential role. First, the brane universe is
initially in the inflationary phase driven by the effective cosmological
constant induced by small mismatch between the vacuum energy in the
5-dimensional bulk and the brane tension. This mismatch arises since the bulk
is initially in a false vacuum. Then, the false vacuum decay occurs, nucleating
a true vacuum bubble with negative energy inside the bulk. The nucleated bubble
expands in the bulk and consequently hits the brane, bringing a hot big-bang
brane universe of the Randall-Sundrum type. Here, the termination of the
inflationary phase is due to the change of the bulk vacuum energy. The bubble
kinetic energy heats up the universe. As a simple realization, we propose a
model, in which we assume an interaction between the brane and the bubble. We
derive the constraints on the model parameters taking into account the
following requirements: solving the flatness problem, no force which prohibits
the bubble from colliding with the brane, sufficiently high reheating
temperature for the standard nucleosynthesis to work, and the recovery of
Newton's law up to 1mm. We find that a fine tuning is needed in order to
satisfy the first and the second requirements simultaneously, although, the
other constraints are satisfied in a wide range of the model parameters.Comment: 20pages, 5figures, some references added, the previous manuscript has
been largely improve