43 research outputs found

    Kinematic discrimination of ataxia in horses is facilitated by blindfolding

    Get PDF
    BACKGROUND: Agreement among experienced clinicians is poor when assessing the presence and severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might be beneficial for assessment of horses with neurological diseases. OBJECTIVES: To assess diagnostic criteria using motion capture to measure variability in spatial gait-characteristics and swing duration derived from ataxic and non-ataxic horses, and to assess if variability increases with blindfolding. STUDY DESIGN: Cross-sectional. METHODS: A total of 21 horses underwent measurements in a gait laboratory and live neurological grading by multiple raters. In the gait laboratory, the horses were made to walk across a runway surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were made to walk normally and with a blindfold in at least three trials each. Displacements of reflective markers on head, fetlock, hoof, fourth lumbar vertebra, tuber coxae and sacrum derived from three to four consecutive strides were processed and descriptive statistics, receiver operator characteristics (ROC) to determine the diagnostic sensitivity, specificity and area under the curve (AUC), and correlation between median ataxia grade and gait parameters were determined. RESULTS: For horses with a median ataxia grade ≥2, coefficient of variation for the location of maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof marker having an AUC of 0.89 with 82% sensitivity and 90% specificity. MAIN LIMITATIONS: The low number of consecutive strides per horse obtained with motion capture could decrease diagnostic utility. CONCLUSIONS: Motion capture can objectively aid the assessment of horses with ataxia. Furthermore, blindfolding increases variation in distal pelvic limb kinematics making it a useful clinical tool

    Comparative analysis of c-kit gene expression and c-Kit immunoreactivity in horses with and without obstructive intestinal disease

    Get PDF
    Previous immunohistochemical studies targeting the receptor tyrosine kinase (c-Kit) have demonstrated an apparent reduction in the number of gastrointestinal pacemaker cells--the interstitial cells of Cajal (ICC)--in horses with intestinal motility disorders. This study compared the level of transcription of the c-kit gene encoding this receptor in horses with and without such motility disorders. Transcription levels of this gene were also compared to the density of ICC immunohistochemically positive for the c-Kit antigen. Intestinal samples were collected from 18 horses with intestinal disease and from 15 control animals. Following gene extraction and identification, real-time quantitative analysis of c-kit and a control gene, ACTB (β-actin), was carried out on all samples and the density of the c-Kit-positive ICC compared. There was a significant reduction in c-Kit immunoreactivity in the ICC of horses with large intestinal obstructive disorders relative to controls but no significant difference in the transcription of the c-kit gene between normal and affected animals. Further studies will be required to elucidate the mechanisms regulating c-Kit expression and to assess the pathophysiological significance of these findings

    Expression of PGP 9.5 by Enteric Neurons in Horses and Donkeys with and without Intestinal Disease

    Get PDF
    Intestinal motility disorders are an important problem in horses and donkeys and this study was carried out in order to evaluate the enteric neurons in animals with and without intestinal disease. Surplus intestinal tissue samples were collected from 28 horses undergoing exploratory laparotomy for colic. In addition, surplus intestinal samples from 17 control horses were collected immediately following humane destruction for clinical conditions not relating to the intestinal tract. Similar samples were also collected during routine post-mortem examinations from 12 aged donkeys; six animals were humanely destroyed for conditions related to the intestinal tract, while the remaining six were humanely destroyed for other reasons including dental and orthopaedic diseases. Tissue samples were fixed in formalin and immunohistochemical labelling was performed targeting the enteric neurons using a polyclonal antibody specific for the neuronal marker PGP 9.5. The distribution and density of neuronal networks were assessed qualitatively and semiquantitatively. There was strong PGP 9.5 expression in both the horse and donkey samples and labelling was detected throughout the tissue sections. In both species, PGP 9.5-immunoreactive nerve fibres were detected in all layers of the intestinal tract, both in large and small intestinal samples. Networks of enteric neurons were present in the donkey with a similar distribution to that seen in the horse. There was no demonstrable difference in enteric neuronal density and distribution in the groups of animals with intestinal disease compared with those without, apart from two (out of 28) horses with intestinal disease that showed a marked reduction in PGP 9.5 immunoreactivity. Apart from these two animals, this total cohort analysis differs from some previously observed findings in horses with intestinal disease and may therefore reflect the different pathophysiological processes occurring in varying intestinal conditions resulting in colic both in the donkey and the horse. © 2013 Elsevier Ltd
    corecore