11 research outputs found

    Induced QCD and Hidden Local ZN Symmetry

    Full text link
    We show that a lattice model for induced lattice QCD which was recently proposed by Kazakov and Migdal has a ZNZ_N gauge symmetry which, in the strong coupling phase, results in a local confinement where only color singlets are allowed to propagate along links and all Wilson loops for non-singlets average to zero. We argue that, if this model is to give QCD in its continuum limit, it must have a phase transition. We give arguments to support presence of such a phase transition

    Quantum self-consistency of AdS×ΣAdS \times \Sigma brane models

    Full text link
    Continuing on our previous work, we consider a class of higher dimensional brane models with the topology of AdSD1+1×ΣAdS_{D_1+1} \times \Sigma, where Σ\Sigma is a one-parameter compact manifold and two branes of codimension 1 are located at the orbifold fixed points. We consider a set-up where such a solution arises from Einstein-Yang-Mills theory and evaluate the one-loop effective potential induced by gauge fields and by a generic bulk scalar field. We show that this type of brane models resolves the gauge hierarchy between the Planck and electroweak scales through redshift effects due to the warp factor a=eπkra=e^{-\pi kr}. The value of aa is then fixed by minimizing the effective potential. We find that, as in the Randall Sundrum case, the gauge field contribution to the effective potential stabilises the hierarchy without fine-tuning as long as the laplacian ΔΣ\Delta_\Sigma on Σ\Sigma has a zero eigenvalue. Scalar fields can stabilise the hierarchy depending on the mass and the non-minimal coupling. We also address the quantum self-consistency of the solution, showing that the classical brane solution is not spoiled by quantum effects.Comment: 10 page

    Black Holes

    No full text

    Population biology of human aging

    No full text
    corecore